Primitively universal quaternary quadratic forms

نویسندگان

چکیده

A (positive definite and integral) quadratic form f is said to be universal if it represents all positive integers, primitively integers primitively. We also say almost Conway Schneeberger proved (see [1]) that there are exactly 204 equivalence classes of quaternary forms. Recently, Earnest Gunawardana in [4] among forms, 152 In this article, we prove 107 determine the set not represented by each remaining 152−107=45

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gonii: Universal Quaternary Quadratic Forms

We continue our study of quadratic forms using Geometry of Numbers methods by considering universal quaternary positive definite integral forms of square discriminant. We give a small multiple theorem for such forms and use it to prove universality for all nine universal diagonal forms. The most interesting case is x2 + 2y2 + 5z2 + 10w2, which required computer calculations.

متن کامل

-Valued Quadratic Forms and Quaternary Sequence Families

In this paper, -valued quadratic forms defined on a vector space over are studied. A classification of such forms is established, distinguishing -valued quadratic forms only by their rank and whether the associated bilinear form is alternating. This result is used to compute the distribution of certain exponential sums, which occur frequently in the analysis of quaternary codes and quaternary s...

متن کامل

Applications of quadratic D-forms to generalized quadratic forms

In this paper, we study generalized quadratic forms over a division algebra with involution of the first kind in characteristic two. For this, we associate to every generalized quadratic from a quadratic form on its underlying vector space. It is shown that this form determines the isotropy behavior and the isometry class of generalized quadratic forms.

متن کامل

Z4-valued quadratic forms and quaternary sequence families

Z4-valued quadratic forms defined on a vector space over GF(2) are studied. A classification of such forms is established, distinguishing Z4-valued quadratic forms only by their rank and whether the associated bilinear form is alternating or not. This result is used to compute the distribution of certain exponential sums, which occur frequently in the analysis of quaternary codes and quaternary...

متن کامل

2-universal Positive Definite Integral Quinary Diagonal Quadratic Forms

As a generalization of the famous four square theorem of Lagrange, Ramanujan found all positive definite integral quaternary diagonal quadratic forms that represent all positive integers. In this paper, we find all positive definite integral quinary diagonal quadratic forms that represent all positive definite integral binary quadratic forms. §

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Number Theory

سال: 2023

ISSN: ['0022-314X', '1096-1658']

DOI: https://doi.org/10.1016/j.jnt.2022.07.011