Primitive exponent preservers

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The local exponent sets of primitive digraphsø

Let D = (V ,E) be a primitive digraph. The local exponent of D at a vertex u ∈ V , denoted by exp D (u), is defined to be the least integer k such that there is a directed walk of length k from u to v for each v ∈ V . Let V = {1, 2, . . ., n}. The vertices of V can be ordered so that exp D (1) 6 exp D (2) 6 · · · 6 exp D (n) = γ (D). We define the kth local exponent set En(k) := {expD(k) | D ∈ ...

متن کامل

The kth upper generalized exponent set for primitive matrices

Let Pn,d be the set of n x n non-symmetric primitive matrices with exactly d nonzero diagonal entries. For each positive integer 2 ~ k ~ n -1, we determine the kth upper generalized exponent set for Pn,d and characterize the extremal matrices by using a graph theoretical method.

متن کامل

Wielandt's proof of the exponent inequality for primitive nonnegative matrices

The proof of the exponent inequality found in Wielandt's unpublished diaries of a result announced without proof in his well known paper on nonnegative irreducible matrices. A facsimile, a transcription, a translation and a commentary are presented. © 2002 Published by Elsevier Science Inc. . In IDS famous paper [3] on nonnegative irreducible matrices published in 1950, Wielandt announced an in...

متن کامل

Linear Size Distance Preservers

The famous shortest path tree lemma states that, for any node s in a graph G = (V,E), there is a subgraph on O(n) edges that preserves all distances between node pairs in the set {s}×V . A very basic question in distance sketching research, with applications to other problems in the field, is to categorize when else graphs admit sparse subgraphs that preserve distances between a set P of p node...

متن کامل

Perfect Matching Preservers

For two bipartite graphs G and G , a bijection ψ : E(G) → E(G) is called a (perfect) matching preserver provided that M is a perfect matching in G if and only if ψ(M) is a perfect matching in G. We characterize bipartite graphs G and G which are related by a matching preserver and the matching preservers between them.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Linear Algebra and its Applications

سال: 2016

ISSN: 0024-3795

DOI: 10.1016/j.laa.2015.08.009