منابع مشابه
The Dual of a Strongly Prime Ideal
Let R be a commutative integral domain with quotient field K and let P be a nonzero strongly prime ideal of R. We give several characterizations of such ideals. It is shown that (P : P) is a valuation domain with the unique maximal ideal P. We also study when P^{&minus1} is a ring. In fact, it is proved that P^{&minus1} = (P : P) if and only if P is not invertible. Furthermore, if P is invertib...
متن کاملS - Fuzzy Prime Ideal Theorem
The notions of a S fuzzy ∧ sub semi lattice, a S fuzzy ideal and a S fuzzy prime ideal of a bounded lattice with truth values in a bounded ∧ sub semi lattice S are introduced which generalize the existing notions with truth values in a unit interval of real numbers. Finally, S fuzzy prime ideal theorem is proved. 2010 AMS Classification: 03G10, 46H10, 06D50, 08A72
متن کاملT-Rough (Prime, Primary) Ideal and T-Rough Fuzzy (Prime, Primary) Ideal on Commutative Rings
The purpose of this paper is to introduce and discuss the concept of T-rough (prime, primary) ideal and T-rough fuzzy (prime, primary) ideal in a commutative ring . Our main aim in this paper is, generalization of theorems which have been proved in [6, 7, 11]. At first, T-rough sets introduced by Davvaz in [6]. By using the paper, we define a concept of T-rough ideal , T-rough quotient ideal an...
متن کاملHigher Newton polygons in the computation of discriminants and prime ideal decomposition in number fields
We present an algorithm for computing discriminants and prime ideal decomposition in number fields. The algorithm is a refinement of a p-adic factorization method based on Newton polygons of higher order. The running-time and memory requirements of the algorithm appear to be very good: for a given prime number p, it computes the p-valuation of the discriminant and the factorization of p in a nu...
متن کاملPrime Ideal Theorem for Double Boolean Algebras
Double Boolean algebras are algebras (D,u,t, , ,⊥,>) of type (2, 2, 1, 1, 0, 0). They have been introduced to capture the equational theory of the algebra of protoconcepts. A filter (resp. an ideal) of a double Boolean algebra D is an upper set F (resp. down set I) closed under u (resp. t). A filter F is called primary if F 6= ∅ and for all x ∈ D we have x ∈ F or x ∈ F . In this note we prove t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Pacific Journal of Mathematics
سال: 1978
ISSN: 0030-8730,0030-8730
DOI: 10.2140/pjm.1978.75.589