PREDICTIVE MODEL SELECTION CRITERIA FOR BAYESIAN LASSO REGRESSION
نویسندگان
چکیده
منابع مشابه
Bayesian Quantile Regression with Adaptive Lasso Penalty for Dynamic Panel Data
Dynamic panel data models include the important part of medicine, social and economic studies. Existence of the lagged dependent variable as an explanatory variable is a sensible trait of these models. The estimation problem of these models arises from the correlation between the lagged depended variable and the current disturbance. Recently, quantile regression to analyze dynamic pa...
متن کاملSelection of Model Selection Criteria for Multivariate Ridge Regression
In the present study, we consider the selection of model selection criteria for multivariate ridge regression. There are several model selection criteria for selecting the ridge parameter in multivariate ridge regression, e.g., the Cp criterion and the modified Cp (MCp) criterion. We propose the generalized Cp (GCp) criterion, which includes Cp andMCp criteria as special cases. The GCp criterio...
متن کاملPosterior predictive Bayesian phylogenetic model selection.
We present two distinctly different posterior predictive approaches to Bayesian phylogenetic model selection and illustrate these methods using examples from green algal protein-coding cpDNA sequences and flowering plant rDNA sequences. The Gelfand-Ghosh (GG) approach allows dissection of an overall measure of model fit into components due to posterior predictive variance (GGp) and goodness-of-...
متن کاملPredictive Alternatives in Bayesian Model Selection
Predictive Alternatives in Bayesian Model Selection by Womack, Andrew Doctor of Philosophy in Mathematics, Washington University in St. Louis, May, 2011. Professor Jeff Gill, Chairperson Model comparison and hypothesis testing is an integral part of all data analyses. In this thesis, I present two new families of information criteria that can be used to perform model comparison. In Chapter 1, I...
متن کاملBayesian Model Selection in Gaussian Regression
We consider a Bayesian approach to model selection in Gaussian linear regression, where the number of predictors might be much larger than the number of observations. From a frequentist view, the proposed procedure results in the penalized least squares estimation with a complexity penalty associated with a prior on the model size. We investigate the optimality properties of the resulting estim...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of the Japanese Society of Computational Statistics
سال: 2015
ISSN: 0915-2350,1881-1337
DOI: 10.5183/jjscs.1501001_220