Prediction of Ultimate Bearing Capacity of Shallow Foundations on Cohesionless Soils: A Gaussian Process Regression Approach
نویسندگان
چکیده
This study examines the potential of soft computing technique—namely, Gaussian process regression (GPR), to predict ultimate bearing capacity (UBC) cohesionless soils beneath shallow foundations. The inputs model are width footing (B), depth (D), geometry (L/B), unit weight sand (γ), and internal friction angle (ϕ). results present were compared with those obtained by two theoretical approaches reported in literature. statistical evaluation shows that presently applied paradigm is better than competing well for prediction UBC (qu). developed GPR a robust qu foundations on soil. Sensitivity analysis was also carried out determine effect each input parameter.
منابع مشابه
Prediction of Ultimate Bearing Capacity of Shallow Foundations on Cohesionless Soils: An Evolutionary Approach
This study proposes an innovative mathematical formula that uses multigene Genetic Programming (GP), a recently developed soft computing technique, to predict the ultimate bearing capacity of shallow foundations on cohesionless soils. The real performance of previously developed approaches is also investigated. The multigene GP-based formula was calibrated and validated using an experimental da...
متن کاملBearing Capacity of Shallow Foundations on Cohesionless Soils: A Random Forest Based Approach
Determining the ultimate bearing capacity (UBC) is vital for design of shallow foundations. Recently, soft computing methods (i.e. artificial neural networks and support vector machines) have been used for this purpose. In this paper, Random Forest (RF) is utilized as a tree-based ensemble classifier for predicting the UBC of shallow foundations on cohesionless soils. The inputs of model are wi...
متن کاملprediction the ultimate bearing capacity of shallow foundations on the cohesionless soils using m5p model tree
bearing capacity prediction of shallow foundation is one of the most important problems in geotechnical engineering practices, with a wide variety range of methods which have been introduced to forecast it accurately. recently, soft computing methods such as artificial neural networks (anns) and support vector machines (svms) have been used for prediction of the ultimate bearing capacity of sha...
متن کاملThe Effect of Spatial Variability and Anisotropy of Soils on Bearing Capacity of Shallow Foundations
Naturally occurred soil deposits inherit heterogeneity and anisotropy in their strength properties. The main purpose of this paper is to model the soil stratum with anisotropy consideration and spatially varying undrained shear strength by using random field theory coupled with finite difference numerical analysis to evaluate their effect on the bearing capacity of the shallow foundations. In t...
متن کاملEvolutionary-based approaches for settlement prediction of shallow foundations on cohesionless soils
Due to the heterogeneous nature of granular soils and the involvement of many effective parameters in the geotechnical behavior of soil-foundation systems, the accurate prediction of shallow foundation settlements on cohesionless soils is a complex engineering problem. In this study, three new evolutionary-based techniques, including evolutionary polynomial regression (EPR), classical genetic p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied sciences
سال: 2021
ISSN: ['2076-3417']
DOI: https://doi.org/10.3390/app112110317