Prediction of the oxygen uptake patterns during an incremental exercise test using long short - term memory in electromyography
نویسندگان
چکیده
Prediction models of the oxygen uptake (VO2) from electromyograms (EMG) lower limb and respiratory muscles during an incremental exercise test were examined. Healthy male adults (n=15) underwent using a cycle ergometer. To predict patterns VO2, we used type recurrent neural network, long short-term memory. The measured VO2 as training data for deep learning, two prediction input values set: muscle model model. In model, EMGs rectus femoris vastus lateralis input. sternocleidomastoid inspiratory time both predicted increased test. histogram showed peak difference between 0 0.5 mL/kg/min. Bland-Altman plots demonstrated that most distributed within range agreement. root mean square error (RMSE) period was 2.1 ± 0.7 mL/kg/min 2.8 1.1 RMSE with increasing course time. ergometer task, each enable estimation pattern VO2. Mild to moderate intensity suitable by electromyography.
منابع مشابه
the effects of keyword and context methods on pronunciation and receptive/ productive vocabulary of low-intermediate iranian efl learners: short-term and long-term memory in focus
از گذشته تا کنون، تحقیقات بسیاری صورت گرفته است که همگی به گونه ای بر مثمر ثمر بودن استفاده از استراتژی های یادگیری لغت در یک زبان بیگانه اذعان داشته اند. این تحقیق به بررسی تاثیر دو روش مختلف آموزش واژگان انگلیسی (کلیدی و بافتی) بر تلفظ و دانش لغوی فراگیران ایرانی زیر متوسط زبان انگلیسی و بر ماندگاری آن در حافظه می پردازد. به این منظور، تعداد شصت نفر از زبان آموزان ایرانی هشت تا چهارده ساله با...
15 صفحه اولPrediction of Covid-19 Prevalence and Fatality Rates in Iran Using Long Short-Term Memory Neural Network
Introduction: The rapid spread of COVID-19 has become a critical threat to the world. So far, millions of people worldwide have been infected with the disease. The Covid-19 pandemic has had significant effects on various aspects of human life. Currently, prediction of the virus's spread is essential in order to be safe and make necessary arrangements. It can help control the rate of its outbrea...
متن کاملPrediction of Covid-19 Prevalence and Fatality Rates in Iran Using Long Short-Term Memory Neural Network
Introduction: The rapid spread of COVID-19 has become a critical threat to the world. So far, millions of people worldwide have been infected with the disease. The Covid-19 pandemic has had significant effects on various aspects of human life. Currently, prediction of the virus's spread is essential in order to be safe and make necessary arrangements. It can help control the rate of its outbrea...
متن کاملTransmembrane Protein Prediction using Long Short-Term Memory Networks
Transmembrane Protein Prediction is a problem with many uses as experimental determination of protein structures is still expensive and for different purposes it can be useful to know the structure. Here I introduce a small long short-term memory network based model which gives a precision of 67 ± 3 and a recall of 71± 3. The model manages, when compared to TMSEG [3], slightly worse but is stil...
متن کاملthe effect of teaching vocabulary through memory learning strategies on iranian intermediate efl learners long-term vocabulary retention
بسیاری از دبیران و دانش آموزان بر این باورند که یادگیری لغات آسان است و شیوه های مختلفی برای یادگیری وجود دارد گرچه یادآوری لغات پس از مدت طولانی بسیار دشوار و پرزحمت است . هدف از این تحقیق آن است که تاثیر استراتژی های حافظه بر روی نگهداری بلند مدت لغات در زبان آموزان خانم سطح متوسط در ایران را بررسی کند. قبل از شروع تدریس، آزمون تعیین سطحی به منظور داشتن زبان آموزان یک سطح برگزار شده و بر اساس...
ذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Japanese Journal of Physical Fitness and Sports Medicine
سال: 2021
ISSN: ['0039-906X', '1881-4751']
DOI: https://doi.org/10.7600/jspfsm.70.355