Predicting stock high price using forecast error with recurrent neural network
نویسندگان
چکیده
منابع مشابه
Stock Price Prediction Using Quantum Neural Network
Quantum Neural Network (QNN) can improve upon the inadequacies of the classical neural network (CNN). The CNN requires a huge memory and needs more computational power. A new field of computation is emerging which integrates quantum computation with CNN. A quantum inspired hybrid model of quantum neurons and classical neurons is proposed. This paper details an approach, perhaps the first attemp...
متن کاملThe stock index forecast based on dynamic recurrent neural network trained with GA
In order to forecast the stock market more accurately, according to the dynamic property for the stock market, propose the real time modeling forecast via dynamic recurrent neural network and use GA to study online, then it improves the network performance and better describes the dynamic characteristic of stock market. By forecasting Shanghai negotiable securities index, it shows better validi...
متن کاملShort-term Prediction of Tehran Stock Exchange Price Index (TEPIX): Using Artificial Neural Network (ANN)
The main objective of this study is to find out whether an Artificial Neural Network (ANN) will be useful to predict stock market price, which is highly non-linear and uncertain. Specifically, this study will focus on forecasting TSE Price Index (TEPIX) as the most significant index of Iran Stock Market. Many data have been used as inputs to the network. These data are observations of 2000 day...
متن کاملEquity forecast: Predicting long term stock price movement using machine learning
Long term investment is one of the major investment strategies. However, calculating intrinsic value of some company and evaluating shares for long term investment is not easy, since analyst have to care about a large number of financial indicators and evaluate them in a right manner. So far, little help in predicting the direction of the company value over the longer period of time has been pr...
متن کاملUsing a weightless neural network to forecast stock prices: A case study of Nigerian stock exchange
This research work, proposes forecasting stock prices in the stock market industry in Nigeria using a Weightless Neural Network (WNN). A neural network application used to demonstrate the application of the WNN in the forecasting of stock prices in the market is designed and implemented in Visual Foxpro 6.0. The proposed network is tested with stock data obtained from the Nigeria Stock Exchange...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied Mathematics and Nonlinear Sciences
سال: 2021
ISSN: 2444-8656
DOI: 10.2478/amns.2021.2.00009