Predicting material microstructure evolution via data-driven machine learning
نویسندگان
چکیده
منابع مشابه
Enhancing Learning from Imbalanced Classes via Data Preprocessing: A Data-Driven Application in Metabolomics Data Mining
This paper presents a data mining application in metabolomics. It aims at building an enhanced machine learning classifier that can be used for diagnosing cachexia syndrome and identifying its involved biomarkers. To achieve this goal, a data-driven analysis is carried out using a public dataset consisting of 1H-NMR metabolite profile. This dataset suffers from the problem of imbalanced classes...
متن کاملPredicting Quality Attributes via Machine-Learning Algorithms
Software metrics provide quantitative means to control the software development and the quality of software products. Getting a set of valid and useful metrics is not only a matter of definition; the entire process includes, among other steps, theoretical and empirical validation of theses metrics to assure their utility. This work is about empirical validation of object-oriented metrics via ma...
متن کاملInteractive Data Exploration via Machine Learning Models
This article provides an overview of our research on data exploration. Our work aims to facilitate interactive exploration tasks in many big data applications in the scientific, biomedical and healthcare domains. We argue for a shift towards learning-based exploration techniques that automatically steer the user towards interesting data areas based on relevance feedback on database samples, aim...
متن کاملSimilarity-based Learning via Data Driven Embeddings
We consider the problem of classification using similarity/distance functions over data. Specifically, we propose a framework for defining the goodness of a (dis)similarity function with respect to a given learning task and propose algorithms that have guaranteed generalization properties when working with such good functions. Our framework unifies and generalizes the frameworks proposed by [1]...
متن کاملData-driven Planning via Imitation Learning
Robot planning is the process of selecting a sequence of actions that optimize for a task specific objective. For instance, the objective for a navigation task would be to find collision free paths, while the objective for an exploration task would be to map unknown areas. The optimal solutions to such tasks are heavily influenced by the implicit structure in the environment, i.e. the configura...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Patterns
سال: 2021
ISSN: 2666-3899
DOI: 10.1016/j.patter.2021.100285