Predicting electronic structures at any length scale with machine learning

نویسندگان

چکیده

The properties of electrons in matter are fundamental importance. They give rise to virtually all molecular and material determine the physics at play objects ranging from semiconductor devices interior giant gas planets. Modeling simulation such diverse applications rely primarily on density functional theory (DFT), which has become principal method for predicting electronic structure matter. While DFT calculations have proven be very useful point being recognized with a Nobel prize 1998, their computational scaling limits them small systems. We developed machine learning framework any length scale. It shows up three orders magnitude speedup systems where is tractable and, more importantly, enables predictions scales infeasible. Our work demonstrates how circumvents long-standing bottleneck advances science frontiers intractable current solutions. This unprecedented modeling capability opens an inexhaustible range astrophysics, novel materials discovery, energy solutions sustainable future.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Machine Learning at Scale

It takes skill to build a meaningful predictive model even with the abundance of implementations of modern machine learning algorithms and readily available computing resources. Building a model becomes challenging if hundreds of terabytes of data need to be processed to produce the training data set. In a digital advertising technology setting, we are faced with the need to build thousands of ...

متن کامل

Adversarial Machine Learning at Scale

Adversarial examples are malicious inputs designed to fool machine learning models. They often transfer from one model to another, allowing attackers to mount black box attacks without knowledge of the target model’s parameters. Adversarial training is the process of explicitly training a model on adversarial examples, in order to make it more robust to attack or to reduce its test error on cle...

متن کامل

Predicting Phospholipidosis Using Machine Learning

Phospholipidosis is an adverse effect caused by numerous cationic amphiphilic drugs and can affect many cell types. It is characterized by the excess accumulation of phospholipids and is most reliably identified by electron microscopy of cells revealing the presence of lamellar inclusion bodies. The development of phospholipidosis can cause a delay in the drug development process, and the impor...

متن کامل

Large Scale Machine Learning

Cette thèse aborde de façon générale les algorithmes d'apprentissage, avec un intérêt tout particulier pour les grandes bases de données. Après avoir for-mulé leprobì eme de l'apprentissage demanì ere mathématique, nous présentons plusieurs algorithmes d'apprentissage importants, en particulier les Multi Layer Perceptrons, les Mixture d'Experts ainsi que les Support Vector Machines. Nous consid...

متن کامل

System-Aware Optimization for Machine Learning at Scale

System-Aware Optimization for Machine Learning at Scale by Virginia Smith Doctor of Philosophy in Computer Science and the Designated Emphasis in Communication, Computation, and Statistics University of California, Berkeley Professor Michael I. Jordan, Co-chair Professor David Culler, Co-chair New computing systems have emerged in response to the increasing size and complexity of modern dataset...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: npj computational materials

سال: 2023

ISSN: ['2057-3960']

DOI: https://doi.org/10.1038/s41524-023-01070-z