Practical Bayesian tomography

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Practical adaptive quantum tomography

We introduce a fast and accurate heuristic for adaptive tomography that addressesmany of the limitations of priormethods. Previous approaches were either too computationally intensive or tailored to handle special cases such as single qubits or pure states. By contrast, our approach combines the efficiency of online optimizationwith generally applicable andwell-motivated data-processing techniq...

متن کامل

Experimental adaptive Bayesian tomography

K. S. Kravtsov,1 S. S. Straupe,2,* I. V. Radchenko,1 N. M. T. Houlsby,3 F. Huszár,3 and S. P. Kulik2 1A. M. Prokhorov General Physics Institute RAS, Moscow, Russia 2Faculty of Physics, M. V. Lomonosov Moscow State University, Moscow, Russia 3Computational and Biological Learning Laboratory, Department of Engineering, University of Cambridge, Cambridge, United Kingdom (Received 26 March 2013; pu...

متن کامل

Practical cone-beam lambda tomography.

As a potentially important technology for medical x-ray computed tomography (CT), lambda tomography (LT) is to reconstruct a gradient-like image only from local projection data. Based on our recently derived exact fan-beam LT formula, [H. Y. Gu and G. Wang, Int. J. Biomed. Imaging 2006(1), 1-9 (2006)] here we propose a practical cone-beam LT algorithm for LT reconstruction from local data colle...

متن کامل

Bayesian Network Tomography and Inference

The aim of this technical report is to give a short overview of known techniques for network tomography (introduced in the paper of Vardi (1996)), extended by a Bayesian approach originating Tebaldi and West (1998). Since the studies of A.K. Erlang (1878-1929) on telephone networks in the last millennium, lots of needs are seen in todays applications of networks and network tomography, so for i...

متن کامل

The Practical Implementation of Bayesian Model Selection

In principle, the Bayesian approach to model selection is straightforward. Prior probability distributions are used to describe the uncertainty surrounding all unknowns. After observing the data, the posterior distribution provides a coherent post data summary of the remaining uncertainty which is relevant for model selection. However, the practical implementation of this approach often require...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: New Journal of Physics

سال: 2016

ISSN: 1367-2630

DOI: 10.1088/1367-2630/18/3/033024