Potential Spaces on Lie Groups

نویسندگان

چکیده

In this paper we discuss function spaces on a general noncompact Lie group, namely the scales of Triebel–Lizorkin and Besov spaces, defined in terms sub-Laplacian with drift. The is written as (negative) sum squares collection left-invariant vector fields satisfying Hormander’s condition. These were recently introduced by authors. prove norm characterization finite differences, density test functions, related isomorphism properties.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Scale Spaces on Lie Groups

In the standard scale space approach one obtains a scale space representation u : R R → R of an image f ∈ L2(R) by means of an evolution equation on the additive group (R,+). However, it is common to apply a wavelet transform (constructed via a representation U of a Lie-group G and admissible wavelet ψ) to an image which provides a detailed overview of the group structure in an image. The resul...

متن کامل

SEMINAR ON LIE GROUPS 1. Lie Groups

Example 1.3. (R,+) Example 1.4. S or T n = S × ...× S Example 1.5. Gl (n,F) ⊆ F, where F = R or C Example 1.6. E3 = isometries of R (2 connected components) Let the orthogonal group O3 < E3 be the subgroup that fixes the origin, and let the special orthogonal group SO (3) = SO3 < O3 be the orientation-preserving elements of O3. Visualizing SO (3): Let u be a vector of length l in R, correspondi...

متن کامل

Lie Algebras, 2-Groups and Cotriangular Spaces

We describe the construction of a Lie algebra from a partial linear space with oriented lines of size 3, generalizing a construction by Kaplansky. We determine all suitable partial linear spaces and the resulting Lie algebras. 1 Lie oriented partial linear spaces A partial linear space is an incidence structure (P,L) with points and lines, such that the point-line incidence graph does not conta...

متن کامل

Euler-Lagrange equations and geometric mechanics on Lie groups with potential

Abstract. Let G be a Banach Lie group modeled on the Banach space, possibly infinite dimensional, E. In this paper first we introduce Euler-Lagrange equations on the Lie group G with potential and right invariant metric. Euler-Lagrange equations are natural extensions of the geodesic equations on manifolds and Lie groups. In the second part, we study the geometry of the mechanical system of a r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Springer INdAM series

سال: 2021

ISSN: ['2281-5198', '2281-518X']

DOI: https://doi.org/10.1007/978-3-030-72058-2_4