Postnatal human enteric neuronal progenitors can migrate, differentiate, and proliferate in embryonic and postnatal aganglionic gut environments

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

14-P002 Mesoderm derived from mouse embryonic stem cells displays nephrogenic potential

The enteric nervous system (ENS) derives from neural crest, which invade and migrate along the developing gut, proliferate extensively, and differentiate into neurons and glial cells organized as interconnected ganglia that control complex behaviours of the gut, such as peristalsis. While most ENS progenitors undergo differentiation, cells exhibiting properties of enteric progenitor cells (EPCs...

متن کامل

14-P003 Identification of genes expressed in the anterior definitive endoderm

The enteric nervous system (ENS) derives from neural crest, which invade and migrate along the developing gut, proliferate extensively, and differentiate into neurons and glial cells organized as interconnected ganglia that control complex behaviours of the gut, such as peristalsis. While most ENS progenitors undergo differentiation, cells exhibiting properties of enteric progenitor cells (EPCs...

متن کامل

Postnatal mouse subventricular zone neuronal precursors can migrate and differentiate within multiple levels of the developing neuraxis.

The mammalian subventricular zone (SVZ) of the lateral wall of the forebrain ventricle retains a population of proliferating neuronal precursors throughout life. Neuronal precursors born in the postnatal and adult SVZ migrate to the olfactory bulb where they differentiate into interneurons. Here we tested the potential of mouse postnatal SVZ precursors in the environment of the embryonic brain:...

متن کامل

14-P001 SOX2 expression provides a means to identify and isolate ENS progenitors

The enteric nervous system (ENS) derives from neural crest, which invade and migrate along the developing gut, proliferate extensively, and differentiate into neurons and glial cells organized as interconnected ganglia that control complex behaviours of the gut, such as peristalsis. While most ENS progenitors undergo differentiation, cells exhibiting properties of enteric progenitor cells (EPCs...

متن کامل

Transplanted progenitors generate functional enteric neurons in the postnatal colon.

Cell therapy has the potential to treat gastrointestinal motility disorders caused by diseases of the enteric nervous system. Many studies have demonstrated that various stem/progenitor cells can give rise to functional neurons in the embryonic gut; however, it is not yet known whether transplanted neural progenitor cells can migrate, proliferate, and generate functional neurons in the postnata...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Pediatric Research

سال: 2017

ISSN: 0031-3998,1530-0447

DOI: 10.1038/pr.2017.4