Positive specializations of symmetric Grothendieck polynomials

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Symmetric, Positive Semidefinite Polynomials Which

This paper presents a construction for symmetric, non-negative polynomials, which are not sums of squares. It explicitly generalizes the Motzkin polynomial and the Robinson polynomials to families of non-negative polynomials, which are not sums of squares. The degrees of the resulting polynomials can be chosen in advance. 2000 Mathematics Subject Classification: 12Y05, 20C30, 12D10, 26C10, 12E10

متن کامل

Specializations of indecomposable polynomials

We address some questions concerning indecomposable polynomials and their behaviour under specialization. For instance we give a bound on a prime p for the reduction modulo p of an indecomposable polynomial P (x) ∈ Z[x] to remain indecomposable. We also obtain a Hilbert like result for indecomposability: if f(t1, . . . , tr, x) is an indecomposable polynomial in several variables with coefficie...

متن کامل

Factorial Grothendieck Polynomials

In this paper, we study Grothendieck polynomials from a combinatorial viewpoint. We introduce the factorial Grothendieck polynomials, analogues of the factorial Schur functions and present some of their properties, and use them to produce a generalisation of a Littlewood-Richardson rule for Grothendieck polynomials.

متن کامل

Quantum Grothendieck Polynomials

Quantum K-theory is a K-theoretic version of quantum cohomology, which was recently defined by Y.-P. Lee. Based on a presentation for the quantum K-theory of the classical flag variety Fln, we define and study quantum Grothendieck polynomials. We conjecture that they represent Schubert classes (i.e., the natural basis elements) in the quantum K-theory of Fln, and present strong evidence for thi...

متن کامل

Specializations of Generalized Laguerre Polynomials

Three specializations of a set of orthogonal polynomials with “8 different q’s” are given. The polynomials are identified as q-analogues of Laguerre polynomials, and the combinatorial interpretation of the moments give infinitely many new Mahonian statistics on permutations.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Advances in Mathematics

سال: 2020

ISSN: 0001-8708

DOI: 10.1016/j.aim.2020.107000