Positive solutions to superlinear second-order divergence type elliptic equations in cone-like domains

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Positive solutions to superlinear second–order divergence type elliptic equations in cone–like domains

We study the problem of the existence and nonexistence of positive solutions to a superlinear second–order divergence type elliptic equation with measurable coefficients −∇ · a · ∇u = u (∗), p > 1, in an unbounded cone–like domain G ⊂ R (N ≥ 3). We prove that the critical exponent p∗(a,G) = inf{p > 1 : (∗) has a positive supersolution at infinity in G } for a nontrivial cone– like domain is alw...

متن کامل

Positive Super-solutions to Semi-linear Second-order Non-divergence Type Elliptic Equations in Exterior Domains

We study the problem of the existence and non-existence of positive super-solutions to a semi-linear second-order non-divergence type elliptic equation ∑N i,j=1 aij(x) ∂2u ∂xi∂xj + up = 0, −∞ < p < ∞, with measurable coefficients in exterior domains of RN . We prove that in a “generic” situation there is one critical value of p that separates the existence region from nonexistence. We reveal th...

متن کامل

Positive solutions to second order semi-linear elliptic equations

Here G ⊆ R (N ≥ 2) is an unbounded domain, and L is a second-order elliptic operator. We mainly confine ourselves to the cases F (x, u) = W (x)u with real p and W (x) a real valued function on G, and F (x, u) = g(u) with g : R→ R continuous and g(0) = 0. The operator L = H − V is of Schrödinger type, namely V = V (x) is a real potential and H = −∆ or more generally H = −∇ · a · ∇ is a second or...

متن کامل

Boundary Estimates for Positive Solutions to Second Order Elliptic Equations

Consider positive solutions to second order elliptic equations with measurable coefficients in a bounded domain, which vanish on a portion of the boundary. We give simple necessary and sufficient geometric conditions on the domain, which guarantee the Hopf-Oleinik type estimates and the boundary Lipschitz estimates for solutions. These conditions are sharp even for harmonic functions.

متن کامل

Positive solutions to singular semilinear elliptic equations with critical potential on cone–like domains

We study the existence and nonexistence of positive (super-) solutions to a singular semilinear elliptic equation −∇ · (|x|∇u)−B|x|u = C|x|u in cone–like domains of R (N ≥ 2), for the full range of parameters A,B, σ, p ∈ R and C > 0. We provide a complete characterization of the set of (p, σ) ∈ R such that the equation has no positive (super-) solutions, depending on the values of A,B and the p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Annales de l'Institut Henri Poincaré C, Analyse non linéaire

سال: 2005

ISSN: 0294-1449

DOI: 10.1016/j.anihpc.2004.03.003