Positive Solutions for Schrödinger-Poisson Systems with Sign-Changing Potential and Critical Growth

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Existence of non-trivial solutions for fractional Schrödinger-Poisson systems with subcritical growth

In this paper, we are concerned with the following fractional Schrödinger-Poisson system:    (−∆s)u + u + λφu = µf(u) +|u|p−2|u|, x ∈R3 (−∆t)φ = u2, x ∈R3 where λ,µ are two parameters, s,t ∈ (0,1] ,2t + 4s > 3 ,1 < p ≤ 2∗ s and f : R → R is continuous function. Using some critical point theorems and truncation technique, we obtain the existence and multiplicity of non-trivial solutions with ...

متن کامل

Multiplicity of Positive Solutions of laplacian systems with sign-changing weight functions

In this paper, we study the multiplicity of positive solutions for the Laplacian systems with sign-changing weight functions. Using the decomposition of the Nehari manifold, we prove that an elliptic system has at least two positive solutions.

متن کامل

Infinitely Many Solutions for Fractional Schrödinger-poisson Systems with Sign-changing Potential

In this article, we prove the existence of multiple solutions for following fractional Schrödinger-Poisson system with sign-changing potential (−∆)u+ V (x)u+ λφu = f(x, u), x ∈ R, (−∆)φ = u, x ∈ R, where (−∆)α denotes the fractional Laplacian of order α ∈ (0, 1), and the potential V is allowed to be sign-changing. Under certain assumptions on f , we obtain infinitely many solutions for this sys...

متن کامل

Multiplicity of positive solutions for critical singular elliptic systems with sign - changing weight function ∗

In this paper, the existence and multiplicity of positive solutions for a critical singular elliptic system with concave and convex nonlinearity and sign-changing weight function, are established. With the help of the Nehari manifold, we prove that the system has at least two positive solutions via variational methods.

متن کامل

multiplicity of positive solutions of laplacian systems with sign-changing weight functions

in this paper, we study the multiplicity of positive solutions for the laplacian systems with sign-changing weight functions. using the decomposition of the nehari manifold, we prove that an elliptic system has at least two positive solutions.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Function Spaces

سال: 2020

ISSN: 2314-8896,2314-8888

DOI: 10.1155/2020/3197596