Positive definite constrained least-squares estimation of matrices
نویسندگان
چکیده
منابع مشابه
Constrained Least-Squares Density-Difference Estimation
We address the problem of estimating the difference between two probability densities. A naive approach is a two-step procedure that first estimates two densities separately and then computes their difference. However, such a two-step procedure does not necessarily work well because the first step is performed without regard to the second step and thus a small error in the first stage can cause...
متن کاملPartial Least Squares Regression on Symmetric Positive-Definite Matrices Regresión de mínimos cuadrados parciales sobre matrices simétricas definidas positiva
Recientemente ha habido un aumento en el interés de analizar diferentes tipos de datos variedad-valuados, dentro de los cuáles aparecen los datos de matrices simétricas definidas positivas. En muchos estudios de análisis de imágenes médicas cerebrales, es de interés principal establecer la asociación entre un conjunto de covariables y los datos variedad-valuados que son considerados como respue...
متن کاملPositive-Definite 1-Penalized Estimation of Large Covariance Matrices
The thresholding covariance estimator has nice asymptotic properties for estimating sparse large covariance matrices, but it often has negative eigenvalues when used in real data analysis. To fix this drawback of thresholding estimation, we develop a positive-definite 1penalized covariance estimator for estimating sparse large covariance matrices. We derive an efficient alternating direction me...
متن کاملEstimation of symmetric positive-definite matrices from imperfect measurements
In a number of contexts relevant to control problems, including estimation of robot dynamics, covariance, and smart structure mass and stiffness matrices, we need to solve an over-determined set of linear equations AX ≈ B with the constraint that the matrix X be symmetric and positive definite. In the classical least squares method the measurements of A are assumed to be free of error, hence, a...
متن کاملDeconvolution Density Estimation on Spaces of Positive Definite Symmetric Matrices
Motivated by applications in microwave engineering and diffusion tensor imaging, we study the problem of deconvolution density estimation on the space of positive definite symmetric matrices. We develop a nonparametric estimator for the density function of a random sample of positive definite matrices. Our estimator is based on the Helgason-Fourier transform and its inversion, the natural tools...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Linear Algebra and its Applications
سال: 1995
ISSN: 0024-3795
DOI: 10.1016/0024-3795(94)00024-8