Poset Pinball, the Dimension Pair Algorithm, and Type A Regular Nilpotent Hessenberg Varieties
نویسندگان
چکیده
منابع مشابه
Poset Pinball, Highest Forms, and (n-2, 2) Springer Varieties
In this manuscript we study type A nilpotent Hessenberg varieties equipped with a natural S1-action using techniques introduced by Tymoczko, Harada-Tymoczko, and Bayegan-Harada, with a particular emphasis on a special class of nilpotent Springer varieties corresponding to the partition λ = (n− 2, 2) for n ≥ 4. First we define the adjacent-pair matrix corresponding to any filling of a Young diag...
متن کاملDecomposing Nilpotent Hessenberg Varieties over Classical Groups
Hessenberg varieties are a family of subvarieties of the flag variety, including the Springer fibers, the Peterson variety, and the entire flag variety itself. The seminal example arises from numerical analysis and consists, for a fixed linear operator M , of the full flags V1 ( V2 . . . ( Vn in GLn with MVi ⊆ Vi+1 for all i. In this paper, I show that all nilpotent Hessenberg varieties in type...
متن کاملBounds for the dimension of the $c$-nilpotent multiplier of a pair of Lie algebras
In this paper, we study the Neumann boundary value problem of a class of nonlinear divergence type diffusion equations. By a priori estimates, difference and variation techniques, we establish the existence and uniqueness of weak solutions of this problem.
متن کاملthe investigation of the relationship between type a and type b personalities and quality of translation
چکیده ندارد.
The structure of a pair of nilpotent Lie algebras
Assume that $(N,L)$, is a pair of finite dimensional nilpotent Lie algebras, in which $L$ is non-abelian and $N$ is an ideal in $L$ and also $mathcal{M}(N,L)$ is the Schur multiplier of the pair $(N,L)$. Motivated by characterization of the pairs $(N,L)$ of finite dimensional nilpotent Lie algebras by their Schur multipliers (Arabyani, et al. 2014) we prove some properties of a pair of nilpoten...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: ISRN Geometry
سال: 2012
ISSN: 2090-6315
DOI: 10.5402/2012/254235