Polynomial interpolation of the Naor–Reingold pseudo-random function

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Polynomial Configurations in Subsets of Random and Pseudo-random Sets

N , which are analogous to the quantitative version of the wellknown Furstenberg-Sárközy theorem due to Balog, Pintz, Pelikán, and Szemerédi. In the dense case, Balog et al showed that there is a constant C > 0 such that for all integer k 2 any subset of the first N integers of density at least C(logN) 1 4 log log log logN contains a configuration of the form {x, x+ d} for some integer d > 0. L...

متن کامل

extensions of some polynomial inequalities to the polar derivative

توسیع تعدادی از نامساوی های چند جمله ای در مشتق قطبی

15 صفحه اول

Polynomial Interpolation

Consider a family of functions of a single variable x: Φ(x; a0, a1, . . . , an), where a0, . . . , an are the parameters. The problem of interpolation for Φ can be stated as follows: Given n + 1 real or complex pairs of numbers (xi, fi), i = 0, . . . , n, with xi 6= xk for i 6= k, determine a0, . . . , an such that Φ(xi; a0, . . . , an) = fi, i = 0, . . . , n. The above is a linear interpolatio...

متن کامل

Pseudo-Random Function Generators With Unbounded Inputs

Definition: (See Goldreich, section 3.6.4.2 .) A function generator F with unbounded inputs associates with each n bit key k ∈ {0, 1} a function Fk : {0, 1}∗ → {0, 1}. We insist that Fk(x) be computable in time polynomial in the lengths of k and x. By pseudo-random for such a generator, we mean the obvious thing: the Distinguisher adversary D is given a function f : {0, 1}∗ → {0, 1} and can que...

متن کامل

Pseudo-Random Function Generators With Unbounded Inputs

Definition: (See Goldreich, section 3.6.4.2 .) A function generator F with unbounded inputs associates with each n bit key k ∈ {0, 1} a function Fk : {0, 1}∗ → {0, 1}. We insist that Fk(x) be computable in time polynomial in the lengths of k and x. By pseudo-random for such a generator, we mean the obvious thing: the Distinguisher adversary D is given a function f : {0, 1}∗ → {0, 1} and can que...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Applicable Algebra in Engineering, Communication and Computing

سال: 2016

ISSN: 0938-1279,1432-0622

DOI: 10.1007/s00200-016-0309-4