Polynomial ergodic averages for certain countable ring actions
نویسندگان
چکیده
<p style='text-indent:20px;'>A recent result of Frantzikinakis in [<xref ref-type="bibr" rid="b17">17</xref>] establishes sufficient conditions for joint ergodicity the setting <inline-formula><tex-math id="M1">\begin{document}$ \mathbb{Z} $\end{document}</tex-math></inline-formula>-actions. We generalize this actions second-countable locally compact abelian groups. obtain two applications result. First, we show that, given an ergodic action id="M2">\begin{document}$ (T_n)_{n \in F} $\end{document}</tex-math></inline-formula> a countable field id="M3">\begin{document}$ F with characteristic zero on probability space id="M4">\begin{document}$ (X,\mathcal{B},\mu) and family id="M5">\begin{document}$ \{p_1,\dots,p_k\} independent polynomials, have</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ \lim\limits_{N \to \infty} \frac{1}{|\Phi_N|}\sum\limits_{n \Phi_N} T_{p_1(n)}f_1\cdots T_{p_k(n)}f_k\ = \ \prod\limits_{j 1}^k \int_X f_i d\mu, $\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>where id="M6">\begin{document}$ L^{\infty}(\mu) $\end{document}</tex-math></inline-formula>, id="M7">\begin{document}$ (\Phi_N) is Følner sequence id="M8">\begin{document}$ (F,+) convergence takes place id="M9">\begin{document}$ L^2(\mu) $\end{document}</tex-math></inline-formula>. This yields corollaries combinatorics topological dynamics. Second, prove that similar holds totally suitable rings.</p>
منابع مشابه
Convergence of weighted polynomial multiple ergodic averages
In this article we study weighted polynomial multiple ergodic averages. A sequence of weights is called universally good if any polynomial multiple ergodic average with this sequence of weights converges in L. We find a necessary condition and show that for any bounded measurable function φ on an ergodic system, the sequence φ(Tnx) is universally good for almost every x. The linear case was cov...
متن کاملErgodic Actions of Countable Groups and Finite Generating Partitions
We prove the following finite generator theorem. Let G be a countable group acting ergodically on a standard probability space. Suppose this action admits a generating partition having finite Shannon entropy. Then the action admits a finite generating partition. We also discuss relationships between generating partitions and f-invariant and sofic entropies.
متن کاملErgodic Theorems for Random Group Averages
This is an earlier, but more general, version of ”An L Ergodic Theorem for Sparse Random Subsequences”. We prove an L ergodic theorem for averages defined by independent random selector variables, in a setting of general measure-preserving group actions. A far more readable version of this paper is in the works.
متن کاملErgodic Averages for Independent Polynomials and Applications
Szemerédi’s Theorem states that a set of integers with positive upper density contains arbitrarily long arithmetic progressions. Bergelson and Leibman generalized this, showing that sets of integers with positive upper density contain arbitrarily long polynomial configurations; Szemerédi’s Theorem corresponds to the linear case of the polynomial theorem. We focus on the case farthest from the l...
متن کاملConvergence of Diagonal Ergodic Averages
The case l = 1 is the mean ergodic theorem, and the result can be viewed as a generalization of that theorem. The l = 2 case was proven by Conze and Lesigne [Conze and Lesigne, 1984], and various special cases for higher l have been shown by Zhang [Zhang, 1996], Frantzikinakis and Kra [Frantzikinakis and Kra, 2005], Lesigne [Lesigne, 1993], and Host and Kra [Host and Kra, 2005]. Tao’s argument ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete and Continuous Dynamical Systems
سال: 2022
ISSN: ['1553-5231', '1078-0947']
DOI: https://doi.org/10.3934/dcds.2022019