Polymeric Shape-Memory Micro-Patterned Surface for Switching Wettability with Temperature
نویسندگان
چکیده
منابع مشابه
Two-Dimensional Open Microfluidic Devices by Tuning the Wettability on Patterned Superhydrophobic Polymeric Surface
We present a simple and economical method to produce a potential open microfluidic polymeric device. Biomimetic superhydrophobic surfaces were prepared on polystyrene using a phase separation methodology. Patterned two-dimensional channels were imprinted on the superhydrophobic substrates by exposing the surface to plasma or UV–ozone radiation. The wettability of the channels could be precisely...
متن کاملA 3d Micro-Plane Model for Shape Memory Alloys
are compared with the experimental results. In these test results the shape memory alloys behavior as: super elasticity under various temperatures, loading rate effects, asymmetry in tension and pressure, various loops of loading and unloading, hydrostatic pressure effects, different proportional tension-shear biaxial loading and unloading, and also deviation from normality due to non-proportio...
متن کاملBioinspired shape-memory graphene film with tunable wettability
Functional materials with specific surface wettability play an important role in a wide variety of areas. Inspired by nature's Nepenthes pitcher plant, we present a novel slippery film with tunable wettability based on a shape-memory graphene sponge. The porous graphene sponge coated with shape-memory polymer was used to lock in inert lubricants and construct slippery surfaces to repel differen...
متن کامل"Lock-and-key" geometry effect of patterned surfaces: wettability and switching of adhesive force.
A rough surface can be a regular (engineered surface), a random (irregular rough surface), or an intermediate case (hierarchical rough surface). Whichever case is used for wettability, a truly superhydrophobic surface exhibits not only a high contact angle (>150 8) but also a low-contact-angle hysteresis (sliding angle). Quéré et al. theoretically described how contact-angle hysteresis generate...
متن کاملRobust liquid-infused surfaces through patterned wettability.
Liquid-infused surfaces display advantageous properties that are normally associated with conventional gas-cushioned superhydrophobic surfaces. However, the surfaces can lose their novel properties if the infused liquid drains from the surface. We explore how drainage due to gravity or due to an external flow can be prevented through the use of chemical patterning. A small area of the overall s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Polymers
سال: 2015
ISSN: 2073-4360
DOI: 10.3390/polym7091477