Poisson Noise Reduction in Deconvolution Microscopy
نویسندگان
چکیده
منابع مشابه
Poisson noise reduction in deconvolution microscopy
Computational optical sectioning microscopy is a powerful tool to reconstruct three-dimensional images from optical two-dimensional sections of a biological specimen acquired by means of a fluorescence microscope. Due to limiting factors in the imaging systems, the images are degraded by both the optical system and detection process. Each of the two-dimensional section of the three-dimensional ...
متن کاملPoisson-Gaussian Noise Reduction Using the Hidden Markov Model in Contourlet Domain for Fluorescence Microscopy Images
In certain image acquisitions processes, like in fluorescence microscopy or astronomy, only a limited number of photons can be collected due to various physical constraints. The resulting images suffer from signal dependent noise, which can be modeled as a Poisson distribution, and a low signal-to-noise ratio. However, the majority of research on noise reduction algorithms focuses on signal ind...
متن کاملDeconvolution microscopy.
Since its introduction in 1983, deconvolution microscopy has become a key image-processing tool for visualizing the cellular structures of fixed and living specimens in three dimensions and at subresolution scale. The last 20 years have seen the development of many different applications based on deconvolution microscopy, including a wide variety of optical setup and deconvolution algorithms. T...
متن کاملPoisson Noise Reduction with Higher-Order Natural Image Prior Model
Poisson denoising is an essential issue for various imaging applications, such as night vision, medical imaging and microscopy. State-of-the-art approaches are clearly dominated by patch-based non-local methods in recent years. In this paper, we aim to propose a local Poisson denoising model with both structure simplicity and good performance. To this end, we consider a variational modeling to ...
متن کاملQuantitative deconvolution microscopy.
The light microscope is an essential tool for the study of cells, organelles, biomolecules, and subcellular dynamics. A paradox exists in microscopy whereby the higher the needed lateral resolution, the more the image is degraded by out-of-focus information. This creates a significant need to generate axial contrast whenever high lateral resolution is required. One strategy for generating contr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computational Interdisciplinary Sciences
سال: 2012
ISSN: 1983-8409,2177-8833
DOI: 10.6062/jcis.2011.02.03.0044