Poisson cohomology of plane quadratic Poisson structures
نویسندگان
چکیده
منابع مشابه
On quantization of quadratic Poisson structures
Any classical r-matrix on the Lie algebra of linear operators on a real vector space V gives rise to a quadratic Poisson structure on V which admits a deformation quantization stemming from the construction of V. Drinfel’d [Dr], [Gr]. We exhibit in this article an example of quadratic Poisson structure which does not arise this way.
متن کاملOn a general approach to the formal cohomology of quadratic Poisson structures
We propose a general approach to the formal Poisson cohomology of r-matrix induced quadratic structures, we apply this device to compute the cohomology of structure 2 of the Dufour-Haraki classification, and provide complete results also for the cohomology of structure 7. Key-words: Poisson cohomology, formal cochain, quadratic Poisson tensor, r-matrix 2000 Mathematics Subject Classification: 1...
متن کاملEssential Variational Poisson Cohomology
In our recent paper [DSK11] we computed the dimension of the variational Poisson cohomology H•K(V) for any quasiconstant coefficient l × l matrix differential operator K of order N with invertible leading coefficient, provided that V is a normal algebra of differential functions over a linearly closed differential field. In the present paper we show that, for K skewadjoint, the Z-graded Lie sup...
متن کاملThe variational Poisson cohomology
It is well known that the validity of the so called LenardMagri scheme of integrability of a bi-Hamiltonian PDE can be established if one has some precise information on the corresponding 1st variational Poisson cohomology for one of the two Hamiltonian operators. In the first part of the paper we explain how to introduce various cohomology complexes, including Lie superalgebra and Poisson coho...
متن کاملFormal Poisson Cohomology of Twisted r–Matrix Induced Structures
Quadratic Poisson tensors of the Dufour-Haraki classification read as a sum of an r-matrix induced structure twisted by a (small) compatible exact quadratic tensor. An appropriate bigrading of the space of formal Poisson cochains then leads to a vertically positive double complex. The associated spectral sequence allows to compute the Poisson-Lichnerowicz cohomology of the considered tensors. W...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Publications of the Research Institute for Mathematical Sciences
سال: 1997
ISSN: 0034-5318
DOI: 10.2977/prims/1195145534