Poisson approximation for sums of independent bivariate Bernoulli vectors

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Poisson Approximation for Sums of Dependent Bernoulli Random Variables

In this paper, we use the Stein-Chen method to determine a non-uniform bound for approximating the distribution of sums of dependent Bernoulli random variables by Poisson distribution. We give two formulas of non-uniform bounds and their applications.

متن کامل

An Algorithm for Fast Generation of Bivariate Poisson Random Vectors

We present “Trivariate Reduction Extension” (TREx) — an exact algorithm for fast generation of bivariate Poisson random vectors. Like the NORTA procedure, TREx has two phases: a preprocessing phase when the required algorithm parameters are identified, and a generation phase when the parameters identified during the preprocessing phase are used to generate the desired Poisson vector. We prove t...

متن کامل

On the bounds in Poisson approximation for independent geometric distributed random variables

‎The main purpose of this note is to establish some bounds in Poisson approximation for row-wise arrays of independent geometric distributed random variables using the operator method‎. ‎Some results related to random sums of independent geometric distributed random variables are also investigated.

متن کامل

A Local Limit Theorem for Sums of Independent Random Vectors

We prove a local limit theorem for sums of independent random vectors satisfying appropriate tightness assumptions. In particular, the local limit theorem holds in dimension 1 if the summands are uniformly bounded.

متن کامل

Bivariate Shepard-Bernoulli operators

We extend the Shepard-Bernoulli operators introduced in [1] to the bivariate case. These new interpolation operators are realized by using local support basis functions introduced in [2] instead of classical Shepard basis functions and the bivariate three point extension [3] of the generalized Taylor polynomial introduced by F. Costabile in [4]. The new operators do not require either the use o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Kodai Mathematical Journal

سال: 1982

ISSN: 0386-5991

DOI: 10.2996/kmj/1138036608