Pointwise Estimate for Linear Combinations of Bernstein–Kantorovich Operators

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pointwise Estimate for Linear Combinations of Phillips Operators

For pointwise approximation of bounded continuous functions by linear combinations of Phillips operators we represent equivalent relation by means of Ditzian-Totik modulus of smoothness. The rate of approximation is better compared with similar estimates, proved in the past for other Szász-type operators. Mathematics subject classification (2010): 41A10, 41A25, 41A36.

متن کامل

A Pointwise Approximation Theorem for Linear Combinations of Bernstein Polynomials

Recently, Z. Ditzian gave an interesting direct estimate for Bernstein polynomials. In this paper we give direct and inverse results of this type for linear combinations of Bernstein polynomials.

متن کامل

Spectrum and essential spectrum of linear combinations of composition operators on the Hardy space H2

Let -----. For an analytic self-map ---  of --- , Let --- be the composition operator with composite map ---  so that ----. Let ---  be a bounded analytic function on --- . The weighted composition operator ---  is defined by --- . Suppose that ---  is the Hardy space, consisting of all analytic functions defined on --- , whose Maclaurin cofficients are square summable. .....

متن کامل

Pointwise Weighted Approximation of Functions with Endpoint Singularities by Combinations of Bernstein Operators

Approximation properties of Bernstein operators have been studied very well (see [2], [3], [5]-[8], [12]-[14], for example). In order to approximate the functions with singularities, Della Vecchia et al. [3] and Yu-Zhao [12] introduced some kinds of modified Bernstein operators. Throughout the paper, C denotes a positive constant independent of n and x, which may be different in different cases...

متن کامل

Pointwise construction of Lipschitz aggregation operators

This paper establishes tight upper and lower bounds on Lipschitz aggregation operators considering their diagonal, opposite diagonal and marginal sections. Also we provide explicit formulae to determine the bounds. These are useful for construction of these type of aggregation operators, especially using interpolation schemata.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Analysis and Applications

سال: 2002

ISSN: 0022-247X

DOI: 10.1006/jmaa.2001.7700