منابع مشابه
Top-Down Induction of Clustering Trees
An approach to clustering is presented that adapts the basic top-down induction of decision trees method towards clustering. To this aim, it employs the principles of instance based learning. The resulting methodology is implemented in the TIC (Top down Induction of Clustering trees) system for first order clustering. The TIC system employs the first order logical decision tree representation o...
متن کاملTop-down induction of logical decision trees
Top-down induction of decison trees (TDIDT) is a very popular machine learning technique. Up till now, it has mainly used for propositional learning, but seldomly for relational learning or inductive logic programming. The main contribution of this paper is the introduction of logic decision trees, which make it possible to use TDIDT in inductive logic programming. An implementation of this top...
متن کاملTop-down Randomization of Weighted Search Trees
Aragon and Seidel 1] presented a solution of the dictionary problem which became very popular in the last years. Their algorithm is easy to implement and fast in practice. The main idea consists in simulating a random input by randomly generated priorities assigned to each key. But this method has two substantial drawbacks. The rst one is the large dependence of the performance and correctness ...
متن کاملTop-Down Induction of Phylogenetic Trees
We propose a novel distance based method for phylogenetic tree reconstruction. Our method is based on a conceptual clustering method that extends the well-known decision tree learning approach. It starts from a single cluster and repeatedly splits it into subclusters until all sequences form a different cluster. We assume that a split can be described by referring to particular polymorphic loca...
متن کاملOblivious Decision Trees , Graphs , and Top - Down
We describe a supervised learning algorithm, EODG, that uses mutual information to build an oblivious decision tree. The tree is then converted to an Oblivious read-Once Decision Graph (OODG) by merging nodes at the same level of the tree. For domains that are appropriate for both decision trees and OODGs, performance is approximately the same as that of C4.5, but the number of nodes in the OOD...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Chemometrics
سال: 2009
ISSN: 0886-9383
DOI: 10.1002/cem.1254