منابع مشابه
A numerical model of cohesion in planetary rings
We present a numerical method that incorporates particle sticking in simulations using the N-body code pkdgrav to study motions in a local rotating frame, such as a patch of a planetary ring. Particles stick to form non-deformable but breakable aggregates that obey the (Eulerian) equations of rigid-body motion. Applications include local simulations of planetary ring dynamics and planet formati...
متن کاملExponential law as a more compatible model to describe orbits of planetary systems
According to the Titus-Bode law, orbits of planets in the solar system obey a geometric progression. Many investigations have been launched to improve this law. In this paper, we apply square and exponential models to planets of solar system, moons of planets, and some extra solar systems, and compare them with each other.
متن کاملStructuring eccentric-narrow planetary rings
A simple and general description of the dynamics of a narrow-eccentric ring is presented. We view an eccentric ring which precesses uniformly at a slow rate as exhibiting a global m = 1 mode, which can be seen as originating from a standing wave superposed on an axisymmetric background. We adopt a continuum description using the language of fluid dynamics which gives equivalent results for the ...
متن کاملSimulation of collisions in planetary rings
We investigate the evolution of structures in planetary rings in the neighbourhood of the orbit of an embedded moonlet (small satellite). The effects of collisions have been taken into account by introducing the velocity dependent restitution coefficient according to experimental and theoretical results. Here we present results of recent many-particle simulations which show a significant influe...
متن کاملApse Alignment of Narrow Eccentric Planetary Rings
The boundaries of the Uranian ǫ, α, and β rings can be fitted by Keplerian ellipses. The pair of ellipses that outline a given ring share a common line of apsides. Apse alignment is surprising because the quadrupole moment of Uranus induces differential precession. We propose that rigid precession is maintained by a balance of forces due to ring self-gravity, planetary oblateness, and interpart...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Highlights of Astronomy
سال: 1992
ISSN: 1539-2996
DOI: 10.1017/s1539299600009199