Pivotal Fusion Categories of Rank 3

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rank 4 premodular categories

We consider the classification problem for rank 4 premodular categories. We uncover a formula for the 2 Frobenius–Schur indicator of a premodular category, and complete the classification of rank 4 premodular categories (up to Grothendieck equivalence). In the appendix we show rank finiteness for premodular categories.

متن کامل

Higher Frobenius-schur Indicators for Pivotal Categories

We define higher Frobenius-Schur indicators for objects in linear pivotal monoidal categories. We prove that they are category invariants, and take values in the cyclotomic integers. We also define a family of natural endomorphisms of the identity endofunctor on a k-linear semisimple rigid monoidal category, which we call the Frobenius-Schur endomorphisms. For a k-linear semisimple pivotal mono...

متن کامل

Fusion Categories Of

We classify semisimple rigid monoidal categories with two iso-morphism classes of simple objects over the field of complex numbers. In the appendix written by P. Etingof it is proved that the number of semisimple Hopf algebras with a given finite number of irreducible representations is finite.

متن کامل

2 2 A ug 2 01 7 MORITA EQUIVALENCE OF POINTED FUSION CATEGORIES OF SMALL RANK

We classify pointed fusion categories C(G,ω) up to Morita equivalence for 1 < |G| < 32. Among them, the cases |G| = 2, 2 and 3 are emphasized. Although the equivalence classes of such categories are not distinguished by their FrobeniusSchur indicators, their categorical Morita equivalence classes are distinguished by the set of the indicators and ribbon twists of their Drinfeld centers. In part...

متن کامل

Non-cyclotomic Fusion Categories

Etingof, Nikshych and Ostrik ask in [8, §2] if every fusion category can be completely defined over a cyclotomic field. We show that this is not the case: in particular one of the fusion categories coming from the Haagerup subfactor [2] and one coming from the newly constructed extended Haagerup subfactor [3] can not be completely defined over a cyclotomic field. On the other hand, we show that...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Moscow Mathematical Journal

سال: 2015

ISSN: 1609-3321,1609-4514

DOI: 10.17323/1609-4514-2015-15-2-373-396