Piecewise Linearization of Real-Valued Subanalytic Functions

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Piecewise Linearization of Real-valued Subanalytic Functions

We show that for a subanalytic function / on a locally compact subanalytic set X there exists a unique subanalytic triangulation (a simplicial complex K , a subanalytic homeomorphism n: \K\ —► X) such that f o n\a , a 6 K , are linear. Let X be a subanalytic set contained and closed in a Euclidean space. A subanalytic triangulation of X is a pair (K , n) where K isa simplicial complex and n is ...

متن کامل

Pointfree topology version of image of real-valued continuous functions

Let $ { mathcal{R}} L$ be the ring of real-valued continuous functions on a frame $L$ as the pointfree  version of $C(X)$, the ring of all real-valued continuous functions on a topological space $X$. Since $C_c(X)$ is the largest subring of $C(X)$ whose elements have countable image, this motivates us to present the pointfree  version of $C_c(X).$The main aim of this paper is to present t...

متن کامل

The ring of real-valued functions on a frame

In this paper, we define and study the notion of the real-valued functions on a frame $L$. We show that $F(L) $, consisting of all frame homomorphisms from the power set of $mathbb{R}$ to a frame $ L$, is an $f$-ring, as a generalization of all functions from a set $X$ into $mathbb R$. Also, we show that $F(L) $ is isomorphic to a sub-$f$-ring of $mathcal{R}(L)$, the ring of real-valued continu...

متن کامل

Subanalytic Functions

We prove a strong version of rectilinearization theorem for subanalytic functions. Then we use this theorem to study the properties of arc-analytic functions.

متن کامل

Real-valued Functions on Flows

We develop the flow analog of the classical Yosida adjunction between spaces and archimedean lattice-ordered groups with strong unit. A product of this development is the flow counterpart of the classical compactification of a space. We characterize those flows which are compactifiable, i.e., dense subflows of a compact flow. Finally, we exhibit a duality between the compactifications of a give...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Transactions of the American Mathematical Society

سال: 1989

ISSN: 0002-9947

DOI: 10.2307/2001005