Picard constant of a finitely sheeted covering surface

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A quintic surface with maximal Picard number

This paper gives the first example of a complex quintic surface in P with maximal Picard number ρ = 45. We also investigate its arithmetic and determine the zeta function.

متن کامل

Finitely Presented Lattices: Canonical Forms and the Covering Relation

A canonical form for elements of a lattice freely generated by a partial lattice is given. This form agrees with Whitman’s canonical form for free lattices when the partial lattice is an antichain. The connection between this canonical form and the arithmetic of the lattice is given. For example, it is shown that every element of a finitely presented lattice has only finitely many minimal join ...

متن کامل

Symplectic Automorphisms and the Picard Group of a K3 Surface

Let X be a K3 surface, and let G be a finite group acting on X by automorphisms. The action of G on X induces an action on the cohomology of X . We assume G acts symplectically: that is, G acts as the identity on H(X). In this case, the minimum resolution Y of the quotient X/G is itself a K3 surface. Nikulin classified the finite abelian groups which act symplectically on K3 surfaces by analyzi...

متن کامل

A characterization of finitely generated multiplication modules

 Let $R$ be a commutative ring with identity and $M$ be a finitely generated unital $R$-module. In this paper, first we give necessary and sufficient conditions that a finitely generated module to be a multiplication module. Moreover, we investigate some conditions which imply that the module $M$ is the direct sum of some cyclic modules and free modules. Then some properties of Fitting ideals o...

متن کامل

Bounds on the Sizes of Constant Weight Covering Codes

Motivated by applications in universal data compression algorithms we study the problem of bounds on the sizes of constant weight covering codes. We are concerned with the minimal sizes of codes of length n and constant weight u such that every word of length n and weight v is within Hamming distance d from a codeword. In addition to a brief summary of part of the relevant literature, we also g...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Kodai Mathematical Journal

سال: 1973

ISSN: 0386-5991

DOI: 10.2996/kmj/1138846774