Piatetski-Shapiro primes in the intersection of multiple Beatty sequences
نویسندگان
چکیده
Suppose that α1,α2,β1,β2∈ℝ. Let α1,α2>1 be irrational and of finite type such 1,α1−1,α2−1 are linearly independent over ℚ. c a real number in the range 1<c<12∕11. In this paper, it is proved there exist infinitely many primes intersection Beatty sequences ℬα1,β1=⌊α1n+β1⌋, ℬα2,β2=⌊α2n+β2⌋ Piatetski-Shapiro sequence
منابع مشابه
Primes in Beatty Sequences in Short Intervals
In this paper we show that sieve methods used previously to investigate primes in short intervals and corresponding Goldbach type problems can be modified to obtain results on primes in Beatty sequences in short intervals.
متن کاملPrimes in Intersections of Beatty Sequences
In this note we consider the question of whether there are infinitely many primes in the intersection of two or more Beatty sequences ⌊ξjn+ ηj⌋, n ∈ N, j = 1, . . . , k. We begin with a straightforward sufficient condition for a set of Beatty sequences to contain infinitely many primes in their intersection. We then consider two sequences when one ξj is rational. However, the main result we est...
متن کاملOn Sums of Primes from Beatty Sequences
Ever since the days of Euler and Goldbach, number-theorists have been fascinated by additive representations of the integers as sums of primes. The most famous result in this field is I.M. Vinogradov’s three primes theorem [7], which states that every sufficiently large odd integer is the sum of three primes. Over the years, a number of authors have studied variants of the three primes theorem ...
متن کاملSubstitution Invariant Beatty Sequences
with θ irrational and taken to satisfy 0 < θ < 1; plainly this may be assumed without loss of generality. Evidently (fn) is a sequence of zeros and ones. Denote by w0 and w1 words on the alphabet {0, 1} ; that is, finite strings in the letters 0 and 1. Then the sequence (fn) is said to be invariant under the substitution W given by W : 0 −→ w0, 1 −→ w1, if the infinite strings fθ = f1f2f3 . . ....
متن کاملPrime divisors in Beatty sequences
We study the values of arithmetic functions taken on the elements of a non-homogeneous Beatty sequence αn+ β , n= 1,2, . . . , where α,β ∈R, and α > 0 is irrational. For example, we show that ∑ n N ω ( αn+ β )∼N log logN and ∑ n N (−1)Ω( αn+β ) = o(N), where Ω(k) and ω(k) denote the number of prime divisors of an integer k = 0 counted with and without multiplicities, respectively. © 2006 Elsevi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Rocky Mountain Journal of Mathematics
سال: 2022
ISSN: ['0035-7596', '1945-3795']
DOI: https://doi.org/10.1216/rmj.2022.52.1375