PIANO: A fast parallel iterative algorithm for multinomial and sparse multinomial logistic regression

نویسندگان

چکیده

Multinomial Logistic Regression is a well-studied tool for classification and has been widely used in fields like image processing, computer vision and, bioinformatics, to name few. Under supervised scenario, model learns weight vector differentiate between any two classes by optimizing over the likelihood objective. With advent of big data, inundation data resulted large dimensional also given rise huge number classes, which makes classical methods applicable estimation not computationally viable. To handle this issue, we here propose parallel iterative algorithm: Parallel Iterative Algorithm MultiNomial LOgistic (PIANO) based on Majorization Minimization procedure, can parallely update each element vectors. Further, show that PIANO be easily extended solve Sparse problem - an extensively studied because its attractive feature selection property. In particular, work out extension with ℓ1 ℓ0 regularizations. We prove converges stationary point problems. Simulations were conducted compare existing methods, it was found proposed algorithm performs better than terms speed convergence.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multinomial logistic regression

Multinomial logistic regression is the extension for the (binary) logistic regression when the categorical dependent outcome has more than two levels. For example, instead of predicting only dead or alive, we may have three groups, namely: dead, lost to follow-up, and alive. In the analysis to follow, a reference group has to be chosen for comparison, the appropriate group would be the alive, i...

متن کامل

Hyperspectral Image Classification Based on a Fast Bregman Sparse Multinomial Logistic Regression Algorithm

The Sparse Multinomial Logistic Regression (SMLR) method introduced in (Krishnapuram, 2005) is among the state-of-the-art in supervised learning. However its application to large datasets, such as hyperspectral imagery is still a rather challenging task from the computational point of view, sometimes even impossible to perform. In this paper, the Bregman iteration-based SMLR method (Bregman-SML...

متن کامل

Multinomial Logistic Regression Ensembles

This article proposes a method for multiclass classification problems using ensembles of multinomial logistic regression models. A multinomial logit model is used as a base classifier in ensembles from random partitions of predictors. The multinomial logit model can be applied to each mutually exclusive subset of the feature space without variable selection. By combining multiple models the pro...

متن کامل

Extreme Sparse Multinomial Logistic Regression: A Fast and Robust Framework for Hyperspectral Image Classification

A Fast and Robust Framework for Hyperspectral Image Classification Faxian Cao1, Zhijing Yang1*, Jinchang Ren2, Wing-Kuen Ling1 1 School of Information Engineering, Guangdong University of Technology, Guangzhou, 510006, China; [email protected]; [email protected]; [email protected] 2 Department of Electronic and Electrical Engineering, University of Strathclyde, Glasgow, G1 1XW, UK; jinchan...

متن کامل

Multinomial Logistic Regression with SPSS

Subjects were engineering majors recruited from a freshman-level engineering class from 2007 through 2010. Data were obtained for 256 students. The outcome variable of interest was retention group: Those who were still active in our engineering program after two years of study were classified as persisters. Those who were no longer in our engineering program were classified as having left in go...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Signal Processing

سال: 2022

ISSN: ['0165-1684', '1872-7557']

DOI: https://doi.org/10.1016/j.sigpro.2022.108459