Phylogenetic Tree Construction Using Markov Chain Monte Carlo
نویسندگان
چکیده
منابع مشابه
Phylogenetic Tree Construction using Markov Chain Monte Carlo
We describe a Bayesian method based on Markov chain simulation to study the phylogenetic relationship in a group of DNA sequences. Under simple models of mutational events, our method produces a Markov chain whose stationary distribution is the conditional distribution of the phylogeny given the observed sequences. Our algorithm strikes a reasonable balance between the desire to move globally t...
متن کاملPhylogenetic tree construction using sequential stochastic approximation Monte Carlo
Monte Carlo methods have received much attention recently in the literature of phylogenetic tree construction. However, they often suffer from two difficulties, the curse of dimensionality and the local-trap problem. The former one is due to that the number of possible phylogenetic trees increases at a super-exponential rate as the number of taxa increases. The latter one is due to that the phy...
متن کاملAutomatic WordNet Construction Using Markov Chain Monte Carlo
WordNet is used extensively as a major lexical resource in information retrieval tasks. However, the qualities of existing Persian WordNets are far from perfect. They are either constructed manually which limits the coverage of Persian words, or automatically which results in unsatisfactory precision. This paper presents a fully-automated approach for constructing a Persian WordNet: A Bayesian ...
متن کاملMarkov Chain Monte Carlo
Markov chain Monte Carlo is an umbrella term for algorithms that use Markov chains to sample from a given probability distribution. This paper is a brief examination of Markov chain Monte Carlo and its usage. We begin by discussing Markov chains and the ergodicity, convergence, and reversibility thereof before proceeding to a short overview of Markov chain Monte Carlo and the use of mixing time...
متن کاملMarkov Chain Monte Carlo
This paper gives a brief introduction to Markov Chain Monte Carlo methods, which offer a general framework for calculating difficult integrals. We start with the basic theory of Markov chains and build up to a theorem that characterizes convergent chains. We then discuss the MetropolisHastings algorithm.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of the American Statistical Association
سال: 2000
ISSN: 0162-1459,1537-274X
DOI: 10.1080/01621459.2000.10474227