Photocatalytic Hydrogen Evolution Driven by a Heteroleptic Ruthenium(II) Bis(terpyridine) Complex
نویسندگان
چکیده
منابع مشابه
Red-light-driven photocatalytic hydrogen evolution using a ruthenium quaterpyridine complex.
A high-temperature, microwave synthesis of [Ru(qpy)3](2+) (qpy = 4,4':2',2'':4'',4'''-quaterpyridine) affords the photosensitiser in quantitative yield. The complex produces H2 photocatalytically in a range extending from the UV region of the spectrum to the red with greater efficiency when compared to [Ru(bpy)3](2+).
متن کاملSolar light-driven photocatalytic hydrogen evolution over ZnIn2S4 loaded with transition-metal sulfides
A series of Pt-loaded MS/ZnIn2S4 (MS = transition-metal sulfide: Ag2S, SnS, CoS, CuS, NiS, and MnS) photocatalysts was investigated to show various photocatalytic activities depending on different transition-metal sulfides. Thereinto, CoS, NiS, or MnS-loading lowered down the photocatalytic activity of ZnIn2S4, while Ag2S, SnS, or CuS loading enhanced the photocatalytic activity. After loading ...
متن کاملPhotocatalytic hydrogen evolution through fully conjugated poly(azomethine) networks.
Three-dimensional conjugated poly(azomethine) networks were found to be promising candidates for applications in photocatalytic water splitting. Straightforward synthetic protocols lead to fully organic photocatalysts that showed enhanced long-time stability. Furthermore, the catalytic performance of these materials was correlated to the molecular composition and the optoelectronic properties o...
متن کاملAmmonia-induced robust photocatalytic hydrogen evolution of graphitic carbon nitride.
We report a new and effective method to prepare high activity graphitic carbon nitride (g-C3N4) by a simple ammonia etching treatment. The obtained g-C3N4 displays a high BET surface area and enhanced electron/hole separation efficiency. The hydrogen evolution rates improved from 52 μmol h(-1) to 316.7 μmol h(-1) under visible light.
متن کاملPolyoxoniobate-based 3D framework materials with photocatalytic hydrogen evolution activity.
Two phosphoniobate-based 3D frameworks were firstly constructed using the hexa-capped Keggin polyoxoniobates [PNb12O40(VO)6](3-) and copper cations. Photocatalytic studies indicated that the hybrid materials exhibit photocatalytic hydrogen evolution activity.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Inorganic Chemistry
سال: 2019
ISSN: 0020-1669,1520-510X
DOI: 10.1021/acs.inorgchem.9b00698