Phase transitions of the variety of random-field Potts models

نویسندگان

چکیده

The phase transitions of random-field q-state Potts models in d=3 dimensions are studied by renormalization-group theory exact solution a hierarchical lattice and, equivalently, approximate Migdal-Kadanoff solutions cubic lattice. recursion, under rescaling, coupled and random-bond (induced rescaling random fields) probability distributions is followed to obtain diagrams. Unlike the Ising model (q=2), several types fields can be defined for q >= 3 models, including random-axis favored, disfavored, randomly favored or disfavored cases, all which studied. Quantitatively very similar diagrams obtained, given three field randomness, with low-temperature ordered persisting, increasingly as temperature lowered, up threshold d=3, calculated temperatures below zero-field critical temperature. Phase thus obtained compared function $q$. low-q reaches higher temperatures, while high-q it fields. This calculation result physically explained.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical study of phase transitions in Potts models.

A model is defined that interpolates between integer dimension and integer q-state Potts models. Phase transitions in these models are studied, and in particular the critical value qc where the phase transition changes from second into first order is determined for several dimensions. For (d, qc) the values (2.0;4.05), (2.5;2.68), (3.0;2.21), (3.5;2.15) and (4.0;2.07) are obtained. ∗e-mail: bar...

متن کامل

Explicit isoperimetric constants, phase transitions in the random-cluster and Potts models, and Bernoullicity

The random-cluster model is a dependent percolation model that has applications in the study of Ising and Potts models. In this paper, several new results for the random-cluster model with cluster parameter q ≥ 1 are obtained. These include an explicit pointwise dynamical construction of random-cluster measures for arbitrary graphs, and for unimodular transitive graphs, lack of percolation for ...

متن کامل

A Motivic Approach to Phase Transitions in Potts Models

We describe an approach to the study of phase transitions in Potts models based on an estimate of the complexity of the locus of real zeros of the partition function, computed in terms of the classes in the Grothendieck ring of the affine algebraic varieties defined by the vanishing of the multivariate Tutte polynomial. We give completely explicit calculations for the examples of the chains of ...

متن کامل

the application of multivariate probit models for conditional claim-types (the case study of iranian car insurance industry)

هدف اصلی نرخ گذاری بیمه ای تعیین نرخ عادلانه و منطقی از دیدگاه بیمه گر و بیمه گذار است. تعین نرخ یکی از مهم ترین مسایلی است که شرکتهای بیمه با آن روبرو هستند، زیرا تعیین نرخ اصلی ترین عامل در رقابت بین شرکتها است. برای تعیین حق بیمه ابتدا می باید مقدار مورد انتظار ادعای خسارت برای هر قرارداد بیمه را برآورد کرد. روش عمومی مدل سازی خسارتهای عملیاتی در نظر گرفتن تواتر و شدت خسارتها می باشد. اگر شر...

15 صفحه اول

Phase transitions of the random-bond Potts chain with long-range interactions.

We study phase transitions of the ferromagnetic q-state Potts chain with random nearest-neighbor couplings having a variance Δ^{2} and with homogeneous long-range interactions, which decay with distance as a power r^{-(1+σ)}, σ>0. In the large-q limit the free-energy of random samples of length L≤2048 is calculated exactly by a combinatorial optimization algorithm. The phase transition stays fi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Physica D: Nonlinear Phenomena

سال: 2021

ISSN: ['1872-8022', '0167-2789']

DOI: https://doi.org/10.1016/j.physa.2021.126339