Phase Space Reconstruction Based CVD Classifier Using Localized Features

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Monthly runoff prediction using phase space reconstruction

A nonlinear prediction method, developed based on the ideas gained from deterministic chaos theory, is employed: (a) to predict monthly runoff; and (b) to detect the possible presence of chaos in runoff dynamics. The method first reconstructs the single-dimensional (or variable) runoff series in a multi-dimensional phase space to represent its dynamics, and then uses a local polynomial approach...

متن کامل

Defining Classifier Regions for WSD Ensembles Using Word Space Features

Based on recent evaluation of word sense disambiguation (WSD) systems [10], disambiguation methods have reached a standstill. In [10] we showed that it is possible to predict the best system for target word using word features and that using this 'optimal ensembling method' more accurate WSD ensembles can be built (3-5% over Senseval state of the art systems with the same amount of possible pot...

متن کامل

Automated Detection of Multiple Sclerosis Lesions Using Texture-based Features and a Hybrid Classifier

Background: Multiple Sclerosis (MS) is the most frequent non-traumatic neurological disease capable of causing disability in young adults. Detection of MS lesions with magnetic resonance imaging (MRI) is the most common technique. However, manual interpretation of vast amounts of data is often tedious and error-prone. Furthermore, changes in lesions are often subtle and extremely unrepresentati...

متن کامل

Speech recognition using reconstructed phase space features

This paper presents a novel method for speech recognition by utilizing nonlinear/chaotic signal processing techniques to extract time-domain based phase space features. By exploiting the theoretical results derived in nonlinear dynamics, a processing space called a reconstructed phase space can be generated where a salient model (the natural distribution of the attractor) can be extracted for s...

متن کامل

Phoneme Classification Using Naive Bayes Classifier in Reconstructed Phase Space

A novel method for classifying speech phonemes is presented. Unlike traditional cepstral based methods, this approach uses histograms of reconstructed phase spaces. A Naïve Bayes classifier uses the probability mass estimates for classification. The approach is verified using isolated fricative, vowel, and nasal phonemes from the TIMIT corpus. The results show that a reconstructed phase space a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Scientific Reports

سال: 2019

ISSN: 2045-2322

DOI: 10.1038/s41598-019-51061-8