Phase shifting technique for extended inline holographic microscopy with a pinhole array
نویسندگان
چکیده
منابع مشابه
Structured Illumination by a Pinhole Array for Holographic Microscopy
The structured illumination of samples is known as one of the techniques for sub diffraction optical microscopy [1-3]. A spatial resolution beyond the optical diffraction limit is achievable by using nano light spots for scanning of the sample. We apply the structured illumination for digital inline holographic microscopy [4-6]. The structured illumination patterns are superposed by that of the...
متن کاملCommon-path phase-shifting lensless holographic microscopy.
We present an approach capable of high-NA imaging in a lensless digital in-line holographic microscopy layout even outside the Gabor's regime. The method is based on spatial multiplexing at the sample plane, allowing a common-path interferometric architecture, where two interferometric beams are generated by a spatial light modulator (SLM) prior to illuminating the sample. The SLM allows phase-...
متن کاملParallel phase-shifting digital holographic microscopy
We propose parallel phase-shifting digital holographic microscopy (PPSDHM) which has the ability of three-dimensional (3-D) motion measurement using space-division multiplexing technique. By the PPSDHM, instantaneous information of both the 3-D structure and the phase distributions of specimens can be simultaneously acquired with a single-shot exposure. We constructed a parallel phase-shifting ...
متن کاملSpace-bandwidth conditions for efficient phase-shifting digital holographic microscopy.
Microscopy by holographic means is attractive because it permits true three-dimensional (3D) visualization and 3D display of the objects. We investigate the necessary condition on the object size and spatial bandwidth for complete 3D microscopic imaging with phase-shifting digital holography with various common arrangements. The cases for which a Fresnel holographic arrangement is sufficient an...
متن کاملInline holographic coherent anti-Stokes Raman microscopy.
We demonstrate a simple approach for inline holographic coherent anti-Stokes Raman scattering (CARS) microscopy, in which a layer of uniform nonlinear medium is placed in front of a specimen to be imaged. The reference wave created by four-wave mixing in the nonlinear medium can interfere with the CARS signal generated in the specimen to result in an inline hologram. We experimentally and theor...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Optics Express
سال: 2012
ISSN: 1094-4087
DOI: 10.1364/oe.20.022383