Phase-field models for brittle and cohesive fracture
نویسندگان
چکیده
منابع مشابه
A phase-field model for cohesive fracture
In this paper a phase-field model for cohesive fracture is developed. After casting the cohesive zone approach in an energetic framework, which is suitable for incorporation in phase-field approaches, the phase-field approach to brittle fracture is recapitulated. The approximation to the Dirac function is discussed with particular emphasis on the Dirichlet boundary conditions that arise in the ...
متن کاملA phase-field description of dynamic brittle fracture
In contrast to discrete descriptions of fracture, phase-field descriptions do not require numerical tracking of discontinuities in the displacement field. This greatly reduces implementation complexity. In this work, we extend a phase-field model for quasi-static brittle fracture to the dynamic case. We introduce a phasefield approximation to the Lagrangian for discrete fracture problems and de...
متن کاملA Geometrically Nonlinear Phase Field Theory of Brittle Fracture
Phase field theory is developed for solids undergoing potentially large deformation and fracture. The elastic potential depends on a finite measure of elastic strain. Surface energy associated with fracture can be anisotropic, enabling description of preferred cleavage planes in single crystals, or isotropic, applicable to amorphous solids such as glass. Incremental solution of the Euler–Lagran...
متن کاملPeridynamic models for dynamic brittle fracture
Adviser: Florin Bobaru Damage and failure in composite materials under dynamic loading has been extensively studied in experiments for several decades. Composite materials exhibit various damage and failure patterns under different loading rates, such as splitting and branching. Classical models cannot directly be applied to problems with discontinuous fields. A new nonlocal continuum model, pe...
متن کاملExtrinsic cohesive modelling of dynamic fracture and microbranching instability in brittle materials
Dynamic crack microbranching processes in brittle materials are investigated by means of a computational fracture mechanics approach using the finite element method with special interface elements and a topological data structure representation. Experiments indicate presence of a limiting crack speed for dynamic crack in brittle materials as well as increasing fracture resistance with crack spe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Meccanica
سال: 2014
ISSN: 0025-6455,1572-9648
DOI: 10.1007/s11012-013-9862-0