Perturbation theory for homogeneous polynomial eigenvalue problems

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Perturbation theory for homogeneous polynomial eigenvalue problems

We consider polynomial eigenvalue problems P(A, α, β)x = 0 in which the matrix polynomial is homogeneous in the eigenvalue (α, β) ∈ C2. In this framework infinite eigenvalues are on the same footing as finite eigenvalues. We view the problem in projective spaces to avoid normalization of the eigenpairs. We show that a polynomial eigenvalue problem is wellposed when its eigenvalues are simple. W...

متن کامل

On the Perturbation Theory for Unitary Eigenvalue Problems

Some aspects of the perturbation theory for eigenvalues of unitary matrices are considered. Making use of the close relation between unitary and Hermitian eigenvalue problems a Courant-Fischer-type theorem for unitary matrices is derived and an inclusion theorem analogue to the Kahan theorem for Hermitian matrices is presented. Implications for the special case of unitary Hessenberg matrices ar...

متن کامل

Perturbation Theory for HomogeneousPolynomial Eigenvalue

We consider polynomial eigenvalue problems P(A; ;)x = 0 in which the matrix polynomial is homogeneous in the eigenvalue (;) 2 C 2. In this framework innnite eigenvalues are on the same footing as nite eigenvalues. We view the problem in projective spaces to avoid normalization of the eigenpairs. We show that a polynomial eigenvalue problem is well-posed when its eigenvalues are simple. We deene...

متن کامل

Perturbation of Palindromic Eigenvalue Problems

We investigate the perturbation of the palindromic eigenvalue problem for the matrix quadratic P (λ) ≡ λA1 + λA0 + A1, with A0, A1 ∈ Cn×n and A0 = A0. The perturbation of palindromic eigenvalues and eigenvectors, in terms of general matrix polynomials, palindromic linearizations, (semi-Schur) anti-triangular canonical forms, differentiation and Sun’s implicit function approach, are discussed.

متن کامل

Polynomial Optimization Problems are Eigenvalue Problems

Abstract Many problems encountered in systems theory and system identification require the solution of polynomial optimization problems, which have a polynomial objective function and polynomial constraints. Applying the method of Lagrange multipliers yields a set of multivariate polynomial equations. Solving a set of multivariate polynomials is an old, yet very relevant problem. It is little k...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Linear Algebra and its Applications

سال: 2003

ISSN: 0024-3795

DOI: 10.1016/s0024-3795(01)00423-2