Persistent homology of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi mathvariant="double-struck">Z</mml:mi><mml:mn>2</mml:mn></mml:msub></mml:math> gauge theories
نویسندگان
چکیده
Topologically ordered phases of matter display a number unique characteristics, including ground states that can be interpreted as patterns closed strings. In this paper, we consider the problem detecting and distinguishing strings in Ising spin configurations sampled from classical $\mathbb{Z}_2$ gauge theory. We address using framework persistent homology, which computes size frequency general loop structures via formation geometric complexes. Implemented numerically on finite-size lattices, show first Betti Vietoris-Rips complexes achieves high density at low temperatures addition, it displays clear signal finite-temperature deconfinement transition three-dimensional argue homology should capable interpreting prominent occur variety systems, making an useful tool theoretical experimental searches for topological order.
منابع مشابه
Complexification of Gauge Theories
For the case of a first-class constrained system with equivariant momentum map, we study the conditions under which the double process of reducing to the constraint surface and dividing out by the group of gauge transformations G is equivalent to the single process of dividing out the initial phase space by the complexification GC of G. For the particular case of a phase space action that is th...
متن کاملPersistent Intersection Homology
The theory of intersection homology was developed to study the singularities of a topologically stratified space. This paper incorporates this theory into the already developed framework of persistent homology. We demonstrate that persistent intersection homology gives useful information about the relationship between an embedded stratified space and its singularities. We give, and prove the co...
متن کاملObjective-oriented Persistent Homology
Persistent homology provides a new approach for the topological simplification of big data via measuring the life time of intrinsic topological features in a filtration process and has found its success in scientific and engineering applications. However, such a success is essentially limited to qualitative data characterization, identification and analysis (CIA). Indeed, persistent homology ha...
متن کاملIntroduction to Persistent Homology
This video presents an introduction to persistent homology, aimed at a viewer who has mathematical aptitude but not necessarily knowledge of algebraic topology. Persistent homology is an algebraic method of discerning the topological features of complex data, which in recent years has found applications in fields such as image processing and biological systems. Using smooth animations, the vide...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical review
سال: 2022
ISSN: ['0556-2813', '1538-4497', '1089-490X']
DOI: https://doi.org/10.1103/physrevb.106.085111