Persistence of Kardar-Parisi-Zhang interfaces

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Slow crossover to Kardar-Parisi-Zhang scaling.

The Kardar-Parisi-Zhang (KPZ) equation is accepted as a generic description of interfacial growth. In several recent studies, however, values of the roughness exponent alpha have been reported that are significantly less than that associated with the KPZ equation. A feature common to these studies is the presence of holes (bubbles and overhangs) in the bulk and an interface that is smeared out....

متن کامل

A Modified Kardar–parisi–zhang Model

A one dimensional stochastic differential equation of the form dX = AXdt+ 1 2 (−A) ∂ξ[((−A)X)]dt+ ∂ξdW (t), X(0) = x is considered, where A = 1 2∂ 2 ξ . The equation is equipped with periodic boundary conditions. When α = 0 this equation arises in the Kardar–Parisi–Zhang model. For α 6= 0, this equation conserves two important properties of the Kardar–Parisi–Zhang model: it contains a quadratic...

متن کامل

Strong-coupling phases of the anisotropic Kardar-Parisi-Zhang equation.

We study the anisotropic Kardar-Parisi-Zhang equation using nonperturbative renormalization group methods. In contrast to a previous analysis in the weak-coupling regime, we find the strong-coupling fixed point corresponding to the isotropic rough phase to be always locally stable and unaffected by the anisotropy even at noninteger dimensions. Apart from the well-known weak-coupling and the now...

متن کامل

Aging of the (2+1)-dimensional Kardar-Parisi-Zhang model.

Extended dynamical simulations have been performed on a (2+1)-dimensional driven dimer lattice-gas model to estimate aging properties. The autocorrelation and the autoresponse functions are determined and the corresponding scaling exponents are tabulated. Since this model can be mapped onto the (2+1)-dimensional Kardar-Parisi-Zhang surface growth model, our results contribute to the understandi...

متن کامل

Upper critical dimension of the Kardar-Parisi-Zhang equation.

Numerical results for the directed polymer model in 1+4 dimensions in various types of disorder are presented. The results are obtained for a system size that is considerably larger than considered previously. For the extreme "strong" disorder case (min-max system), associated with the directed percolation model, the expected value of the meandering exponent, ζ=0.5, is clearly revealed, with ve...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Europhysics Letters (EPL)

سال: 1999

ISSN: 0295-5075,1286-4854

DOI: 10.1209/epl/i1999-00125-0