Permutability of matrices over bipotent semirings
نویسندگان
چکیده
Abstract We study permutability properties of matrix semigroups over commutative bipotent semirings (of which the best-known example is tropical semiring ). prove that every such semigroup weakly permutable (a result previous stated in literature, but with an erroneous proof) and then proceed to depth question when they are strongly (which turns out depend heavily on semiring). Along way we classify monogenic describe all isomorphisms between truncated semirings.
منابع مشابه
On idempotent matrices over semirings
Idempotent matrices play a significant role while dealing with different questions in matrix theory and its applications. It is easy to see that over a field any idempotent matrix is similar to a diagonal matrix with 0 and 1 on the main diagonal. Over a semiring the situation is quite different. For example, the matrix J of all ones is idempotent over Boolean semiring. The first characterizatio...
متن کاملTan's Epsilon-Determinant and Ranks of Matrices over Semirings
We use the ϵ-determinant introduced by Ya-Jia Tan to define a family of ranks of matrices over certain semirings. We show that these ranks generalize some known rank functions over semirings such as the determinantal rank. We also show that this family of ranks satisfies the rank-sum and Sylvester inequalities. We classify all bijective linear maps which preserve these ranks.
متن کاملConstraint Solving over Semirings
We introduce a general framework for constraint solving where classical CSPs, fuzzy CSPs, weighted CSPs, partial constraint satisfaction, and others can be easily cast. The framework is based on a semiring structure, where the set of the semiring specifies the values to be associated to each tuple of values of the variable domain, and the two semiring operations (+ and x) model constraint proje...
متن کاملIdempotent Subreducts of Semimodules over Commutative Semirings
A short proof of the characterization of idempotent subreducts of semimodules over commutative semirings is presented. It says that an idempotent algebra embeds into a semimodule over a commutative semiring, if and only if it belongs to the variety of Szendrei modes.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Semigroup Forum
سال: 2022
ISSN: ['0037-1912', '1432-2137']
DOI: https://doi.org/10.1007/s00233-022-10268-4