PERIODIC ORBITS OF QUADRATIC POLYNOMIALS OF PERIODS SIX AND SEVEN

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Quadratic Periodic Points of Quadratic Polynomials

We focus on a very specific case of the Uniform Boundedness Conjecture, namely, bounding the number of possible c such that the quadratic polynomial φc(z) = z2 + c has quadratic periodic points of some small period. We show that there are infinitely many rational c with quadratic 4-cycles, with all such c completely understood; and only finitely many rational c with quadratic 5-cycles (we conje...

متن کامل

Periodic Points of Quadratic Polynomials

A point of period k of a function f is a point x such that f (x) = x but f (x) 6= x for any 0 < i < k. Let φk(f) denote the number of real points of period k of f . In the case that f is a quadratic polynomial, we develop an algorithm to explicitly characterize φk(f) in terms of the coefficients of f. We show the resulting characterization for k ≤ 6. The method extends to higher k and higher de...

متن کامل

Multipliers of periodic orbits of quadratic polynomials and the parameter plane

We prove an extension result for the multiplier of an attracting periodic orbit of a quadratic map as a function of the parameter. This has applications to the problem of geometry of the Mandelbrot and Julia sets. In particular, we prove that the size of p/q-limb of a hyperbolic component of the Mandelbrot set of period n is O(4n/p), and give an explicit condition on internal arguments under wh...

متن کامل

Vertex Maps for Trees: Algebra and Periods of Periodic Orbits

Let T be a tree with n vertices. Let f : T → T be continuous and suppose that the n vertices form a periodic orbit under f . The combinatorial information that comes from possible permutations of the vertices gives rise to an irreducible representation of Sn. Using the algebraic information it is shown that f must have periodic orbits of certain periods. Finally, a family of maps is defined whi...

متن کامل

Weak Hyperbolicity on Periodic Orbits for Polynomials

We prove that if the multipliers of the repelling periodic orbits of a complex polynomial grow at least like n 5+ε , for some ε > 0, then the Julia set of the polynomial is locally connected when it is connected. As a consequence for a polynomial the presence of a Cremer cycle implies the presence of a sequence of repelling periodic orbits with " small " multipliers. Somehow surprisingly the pr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Dynamic Systems and Applications

سال: 2018

ISSN: 1056-2176

DOI: 10.12732/dsa.v27i1.4