منابع مشابه
K-Dependence Bayesian Classifier Ensemble
To maximize the benefit that can be derived from the information implicit in big data, ensemble methods generate multiple models with sufficient diversity through randomization or perturbation. A k-dependence Bayesian classifier (KDB) is a highly scalable learning algorithm with excellent time and space complexity, along with high expressivity. This paper introduces a new ensemble approach of K...
متن کاملK-hyperplane Hinge-Minimax Classifier
We explore a novel approach to upper bound the misclassification error for problems with data comprising a small number of positive samples and a large number of negative samples. We assign the hinge-loss to upper bound the misclassification error of the positive examples and use the minimax risk to upper bound the misclassification error with respect to the worst case distribution that generat...
متن کاملA K Nearest Classifier design
This paper presents a multi-classifier system design controlled by the topology of the learning data. Our work also introduces a training algorithm for an incremental self-organizing map (SOM). This SOM is used to distribute classification tasks to a set of classifiers. Thus, the useful classifiers are activated when new data arrives. Comparative results are given for synthetic problems, for an...
متن کاملPerformance Evaluation of Multistage Classifier
Ensemble of classifiers is one of the most researched methods in pattern classification in recency. It’s a well-known fact that multiple phases for evaluation provides more accuracy. In this paper we proposed a multistage classifier approach where we are applying three supervised classifiers for the classification in pattern recognition. Three Classifiers are Multilayer Perceptron (MLP), K-Near...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: KAGAKU KOGAKU RONBUNSHU
سال: 1984
ISSN: 0386-216X,1349-9203
DOI: 10.1252/kakoronbunshu.10.323