Peptidoglycan recognition proteins in hematophagous arthropods
نویسندگان
چکیده
منابع مشابه
Structural basis for peptidoglycan binding by peptidoglycan recognition proteins.
Peptidoglycan (PGN) recognition proteins (PGRPs) are pattern-recognition receptors of the innate immune system that bind and, in some cases, hydrolyze bacterial PGNs. We determined the crystal structure, at 2.30-A resolution, of the C-terminal PGN-binding domain of human PGRP-Ialpha in complex with a muramyl tripeptide representing the core of lysine-type PGNs from Gram-positive bacteria. The p...
متن کاملDual strategies for peptidoglycan discrimination by peptidoglycan recognition proteins (PGRPs).
The innate immune system constitutes the first line of defense against microorganisms in both vertebrates and invertebrates. Although much progress has been made toward identifying key receptors and understanding their role in host defense, far less is known about how these receptors recognize microbial ligands. Such studies have been severely hampered by the need to purify ligands from microbi...
متن کاملLigand-induced dimerization of Drosophila peptidoglycan recognition proteins in vitro.
Drosophila knockout mutants have placed peptidoglycan recognition proteins (PGRPs) in the two major pathways controlling immune gene expression. We now examine PGRP affinities for peptidoglycan. PGRP-SA and PGRP-LCx are bona fide pattern recognition receptors, and PGRP-SA, the peptidoglycan receptor of the Toll/Dif pathway, has selective affinity for different peptidoglycans. PGRP-LCx, the defa...
متن کاملPeptidoglycan recognition in Drosophila.
Drosophila rely primarily on innate immune responses to effectively combat a wide array of microbial pathogens. The hallmark of the Drosophila humoral immune response is the rapid production of AMPs (antimicrobial peptides) by the fat body, the insect homologue of the mammalian liver. Production of these AMPs is controlled at the level of transcription by two NF-kappaB (nuclear factor kappaB) s...
متن کاملPeptidoglycan Recognition Proteins: Major Regulators of Drosophila Immunity
All eukaryotic organisms have an innate immune system characterized by germ-line encoded receptors and effector molecules, which mediate detection and clearance of microbes such as bacteria, fungi, and parasites. Vertebrate animals have, in addition to innate immune responses, evolved an adaptive immune system characterized by antibodies and T-cell receptors. Insects in general and the fruit fl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Developmental & Comparative Immunology
سال: 2018
ISSN: 0145-305X
DOI: 10.1016/j.dci.2017.12.017