Peptide classification using optimal and information theoretic syntactic modeling

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Peptide classification using optimal and information theoretic syntactic modeling

We consider the problem of classifying peptides using the information residing in their syntactic representations. This problem, which has been studied for more than a decade, has typically been investigated using distance-based metrics that involve the edit operations required in the peptide comparisons. In this paper, we shall demonstrate that the Optimal and Information Theoretic (OIT) model...

متن کامل

On Utilizing Optimal and Information Theoretic Syntactic Modeling for Peptide Classification

Syntactic methods in pattern recognition have been used extensively in bioinformatics, and in particular, in the analysis of gene and protein expressions, and in the recognition and classification of biosequences. These methods are almost universally distance-based. This paper concerns the use of an Optimal and Information Theoretic (OIT) probabilistic model [11] to achieve peptide classificati...

متن کامل

Optimal and Information Theoretic Syntactic Pattern Recognition for Traditional Errors

In this paper we present a foundational basis for optimal and information theoretic syntactic pattern recognition. We do this by developing a rigorous model, M*, for channels which permit arbitrarily distributed substitution, deletion and insertion syntactic errors. More explicitly, if A is any finite alphabet and A* the set of words over A, we specify a stochastically consistent scheme by whic...

متن کامل

Prototype Based Classification Using Information Theoretic Learning

In this article we extend the (recently published) unsupervised information theoretic vector quantization approach based on the Cauchy–Schwarz-divergence for matching data and prototype densities to supervised learning and classification. In particular, first we generalize the unsupervised method to more general metrics instead of the Euclidean, as it was used in the original algorithm. Thereaf...

متن کامل

A formal theory for optimal and information theoretic syntactic pattern recognition

In this paper we present a foundational basis for optimal and information theoretic syntactic pattern recognition. We do this by developing a rigorous model, M*, for channels which permit arbitrarily distributed substitution, deletion and insertion syntactic errors. More explicitly, if A is any finite alphabet and A* the set of words over A, we specify a stochastically consistent scheme by whic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Pattern Recognition

سال: 2010

ISSN: 0031-3203

DOI: 10.1016/j.patcog.2010.05.022