Peng's Maximum Principle for Stochastic Partial Differential Equations
نویسندگان
چکیده
We extend Peng's maximum principle for semilinear stochastic partial differential equations (SPDEs) in one space-dimension with non-convex control domains and control-dependent diffusion coefficients to the case of general cost functionals Nemytskii-type coefficients. Our analysis is based on a new approach characterization second order adjoint state as solution function-valued backward SPDE.
منابع مشابه
global results on some nonlinear partial differential equations for direct and inverse problems
در این رساله به بررسی رفتار جواب های رده ای از معادلات دیفرانسیل با مشتقات جزیی در دامنه های کراندار می پردازیم . این معادلات به فرم نیم-خطی و غیر خطی برای مسایل مستقیم و معکوس مورد مطالعه قرار می گیرند . به ویژه، تاثیر شرایط مختلف فیزیکی را در مساله، نظیر وجود موانع و منابع، پراکندگی و چسبندگی در معادلات موج و گرما بررسی می کنیم و به دنبال شرایطی می گردیم که متضمن وجود سراسری یا عدم وجود سراسر...
Algorithm Refinement for Stochastic Partial Differential Equations
We construct a hybrid particle/continuum algorithm for linear diffusion in the fluctuating hydrodynamic limit. The particles act as independent random walkers and the fluctuating diffusion equation is solved by a finite difference scheme. At the interface between the particle and continuum computations the coupling is by flux matching, and yields exact mass conservation. This approach is an ext...
متن کاملPostprocessing for Stochastic Parabolic Partial Differential Equations
We investigate the strong approximation of stochastic parabolic partial differential equations with additive noise. We introduce post-processing in the context of a standard Galerkin approximation, although other spatial discretizations are possible. In time, we follow [20] and use an exponential integrator. We prove strong error estimates and discuss the best number of postprocessing terms to ...
متن کاملEffective action for stochastic partial differential equations.
Stochastic partial differential equations (SPDEs) are the basic tool for modeling systems where noise is important. SPDEs are used for models of turbulence, pattern formation, and the structural development of the universe itself. It is reasonably well known that certain SPDEs can be manipulated to be equivalent to (nonquantum) field theories that nevertheless exhibit deep and important relatio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Siam Journal on Control and Optimization
سال: 2021
ISSN: ['0363-0129', '1095-7138']
DOI: https://doi.org/10.1137/20m1368057