Penalized empirical likelihood for high-dimensional partially linear varying coefficient model with measurement errors

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generalized varying coefficient partially linear measurement errors models

We study generalized varying coefficient partially linearmodels when some linear covariates are error prone, but their ancillary variables are available. We first calibrate the error-prone covariates, then develop a quasi-likelihood-based estimation procedure. To select significant variables in the parametric part, we develop a penalized quasi-likelihood variable selection procedure, and the re...

متن کامل

Adaptive LASSO for Varying-Coefficient Partially Linear Measurement Error Models

This paper extends the adaptive LASSO (ALASSO) for simultaneous parameter estimation and variable selection to a varying-coefficient partially linear model where some of the covariates are subject to measurement errors of an additive form. We draw comparisons with the SCAD, and prove that both the ALASSO and SCAD attain the oracle property under this setup. We further develop an algorithm in th...

متن کامل

Estimation in Partially linear Varying-coefficient Errors-in-Variable with stochastic linear restrictions

In this paper we study the estimator of the Partially linear Varying-coefficient Errors-inVariable model with stochastic linear restrictions. We present a mixed Profile least squares estimator when the covariates in the linear part are measured with additive error and some additional stochastic linear restrictions on the parametric component are available.

متن کامل

Imputed Empirical Likelihood for Varying Coefficient Models with Missing Covariates

The empirical likelihood-based inference for varying coefficient models with missing covariates is investigated. An imputed empirical likelihood ratio function for the coefficient functions is proposed, and it is shown that iis limiting distribution is standard chi-squared. Then the corresponding confidence intervals for the regression coefficients are constructed. Some simulations show that th...

متن کامل

Profile forward regression screening for ultra-high dimensional semiparametric varying coefficient partially linear models

In this paper, we consider semiparametric varying coefficient partially linear models when the predictor variables of the linear part are ultra-high dimensional where the dimensionality grows exponentially with the sample size. We propose a profile forward regression (PFR) method to perform variable screening for ultra-high dimensional linear predictor variables. The proposed PFR algorithm can ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Multivariate Analysis

سال: 2016

ISSN: 0047-259X

DOI: 10.1016/j.jmva.2016.01.009