PEMILIHAN PORTOFOLIO SAHAM DENGAN MENGGUNAKAN WEIGHTED FREQUENT ITEMSETS
نویسندگان
چکیده
منابع مشابه
Multidimensi Pada Data Warehouse Dengan Menggunakan Rumus Kombinasi
Multidimensional in data warehouse is a compulsion and become the most important for information delivery, without multidimensional data warehouse is incomplete. Multidimensional give the able to analyze business measurement in many different ways. Multidimensional is also synonymous with online analytical processing (OLAP).
متن کاملValidasi data dengan menggunakan objek lookup pada borland delphi 7.0
s: Developing an application with some tables must concern the validation of input (scpecially in Table Child). In order to maximize the accuracy and input data validation. Its called lookup (took data from other dataset). There are 2 (two) ways to lookup data from Table Parent: 1) Using Objects (DBLookupComboBox & DBLookupListBox), or 2) Arranging The Properties Of Fields Data Type (shown by u...
متن کاملMining Frequent Itemsets for data streams over Weighted Sliding Windows
In this paper, we propose a new framework for data stream mining, called the weighted sliding window model. The proposed model allows the user to specify the number of windows for mining, the size of a window, and the weight for each window. Thus, users can specify a higher weight to a more significant data section, which will make the mining result closer to user’s requirements. Based on the w...
متن کاملAxiomatization of frequent itemsets
Mining association rules is very popular in the data mining community. Most algorithms designed for finding association rules start with searching for frequent itemsets. Typically, in these algorithms, counting phases and pruning phases are interleaved. In the counting phase, partial information about the frequencies of selected itemsets is gathered. In the pruning phase as much as possible of ...
متن کاملFinding Cyclic Frequent Itemsets
Mining various types of association rules from supermarket datasets is an important data mining problem. One similar problem involves finding frequent itemsets and then deriving rules from frequent itemsets. The supermarket data is temporal. Considering time attributes in the supermarket dataset some association rules can be extracted which may hold for a small time interval and not throughout ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Indonesian Journal on Computing (Indo-JC)
سال: 2018
ISSN: 2460-9056,2460-9234
DOI: 10.21108/indojc.2018.3.2.239