Pemilihan Model Terbaik pada Generalized Poisson Regression Menggunakan Akaike Information Criterion

نویسندگان

چکیده

ABSTRAK
 Poisson regression merupakan salah satu model regresi yang dapat digunakan untuk menganalisis hubungan antara variabel respon berupa data count dengan prediktor count, kontinu, kategorik atau campuran syarat terjadi equidispersion yaitu nilai variansi dari harus sama rata-ratanya. Namun sering adalah pelanggaran terhadap equidispersion. Generalized Regression (GPR) suatu lebih dan mengalami underdispersion, equidispersion, overdispersion. Data tuberkulosis paru (TB paru) di Indonesia tahun 2020 overdispersion, sehingga GPR metode cocok memodelkan tersebut. Tujuan penelitian ini mendapatkan terbaik pada jumlah kasus TB mengetahui faktor-faktor memengaruhinya. Hasil analisis menunjukkan bahwa terdapat lima belas terbentuk empat berpengaruh 2020. Model berdasarkan Akaike Information Criterion (AIC) terkecil kepadatan penduduk, penduduk miskin, persentase lantai rumah tidak kedap air, tempat pengelolaan pangan memenuhi syarat.
 ABSTRACT
 is a that can be used to analyze the relationship between response variables in form of and predictor continuous, categorical or mixed with condition occurs, namely variance value variable must equal average value. However, what often happens greater than called one more occure for pulmonary tuberculosis occured so suitable method data. The purpose this study was obtain best factors significantly influence number cases results analysis show there are fifteen models formed from four affect based on smallest influential variables, population density, poor people, percentage house floors not waterproof, food management places meet requirements.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Extending the Akaike Information Criterion to Mixture Regression Models

We examine the problem of jointly selecting the number of components and variables in finite mixture regression models. We find that the Akaike information criterion is unsatisfactory for this purpose because it overestimates the number of components, which in turn results in incorrect variables being retained in the model. Therefore, we derive a new information criterion, the mixture regressio...

متن کامل

Censored generalized Poisson regression model

This paper develops a censored generalized Poisson regression model that can be used to predict a response variable that is a2ected by one or more explanatory variables. The censored generalized Poisson regression model is suitable for modeling count data that exhibit either overor under-dispersion. The regression parameters are estimated by the method of maximum likelihood and approximate test...

متن کامل

An improved Akaike information criterion for state-space model selection

Following the work of Hurvich, Shumway, and Tsai (1990), we propose an “improved” variant of the Akaike information criterion, AICi, for state-space model selection. The variant is based on Akaike’s (1973) objective of estimating the Kullback-Leibler information (Kullback 1968) between the densities corresponding to the fitted model and the generating or true model. The development of AICi proc...

متن کامل

Exponential Smoothing and the Akaike Information Criterion

Using an innovations state space approach, it has been found that the Akaike information criterion (AIC) works slightly better, on average, than prediction validation on withheld data, for choosing between the various common methods of exponential smoothing for forecasting. There is, however, a puzzle. Should the count of the seed states be incorporated into the penalty term in the AIC formula?...

متن کامل

Multidimensi Pada Data Warehouse Dengan Menggunakan Rumus Kombinasi

Multidimensional in data warehouse is a compulsion and become the most important for information delivery, without multidimensional data warehouse is incomplete. Multidimensional give the able to analyze business measurement in many different ways. Multidimensional is also synonymous with online analytical processing (OLAP).

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: STATISTIKA: Journal of Theoretical Statistics and Its Applications

سال: 2023

ISSN: ['2599-2538', '1411-5891']

DOI: https://doi.org/10.29313/statistika.v23i1.1925