Path-dependent convex conservation laws

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the spreading of characteristics for non-convex conservation laws

We study the spreading of characteristics for a class of one-dimensional scalar conservation laws for which the ° ux function has one point of in° ection. It is well known that in the convex case the characteristic speed satis ̄es a one-sided Lipschitz estimate. Using Dafermos’ theory of generalized characteristics, we show that the characteristic speed in the non-convex case satis ̄es an Holder...

متن کامل

Conservation laws ,

We show that if performance measures in stochastic and dynamic scheduling problems satisfy generalized conservation laws, then the feasible space of achievable performance is a polyhedron called an extended polymatroid that generalizes the usual polymatroids introduced by Edmonds. Optimization of a linear objective over an extended polymatroid is solved by an adaptive greedy algorithm, which le...

متن کامل

Conservation Laws for Coding Conservation Laws for Coding

This work deals with coding systems based on sparse graphs. The key issue we address is the relationship between iterative (in particular belief propagation) and maximum a posteriori decoding. We show that between the two there is a fundamental connection, which is reminiscent of the Maxwell construction in thermodynamics. The main objects we consider are EXIT-like functions. EXIT functions wer...

متن کامل

Viscous Conservation Laws, Part I: Scalar Laws

Viscous conservation laws are the basic models for the dissipative phenomena. We aim at a systematic presentation of the basic ideas for the quantitative study of the nonlinear waves for viscous conservation laws. The present paper concentrates on the scalar laws; an upcoming Part II will deal with the systems. The basic ideas for scalar viscous conservation laws originated from two sources: th...

متن کامل

On integrable conservation laws.

We study normal forms of scalar integrable dispersive (not necessarily Hamiltonian) conservation laws, via the Dubrovin-Zhang perturbative scheme. Our computations support the conjecture that such normal forms are parametrized by infinitely many arbitrary functions that can be identified with the coefficients of the quasi-linear part of the equation. Moreover, in general, we conjecture that two...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Differential Equations

سال: 2018

ISSN: 0022-0396

DOI: 10.1016/j.jde.2018.04.045